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Abstract

This paper describes a static load balancing scheme
for partial differential equation solvers in a distributed
computing environment. Though there has been much
research on static load balancing for uniform proces-
sors, a distributed computing environment is a com-
putationally more difficult target because it usually
consists of a variety of processors. Our method consid-
ers both computing and communication time to min-
imize the total execution time with automatic data
partitioning and processor allocation. This problem is
formulated as a combinatorial optimization and solved
by the branch-and-bound method for up to 20–24 pro-
cessors. This paper also presents approximation algo-
rithms that give good allocation and partitioning in
practical time. The quality of the approximation is
quantitively evaluated in comparison to the optimal
solution or theoretical lower bounds. Our method is
general and applicable to a wide variety of parallel
processing applications.

1 Introduction

NSL [1] [2] is a numerical simulation language sys-
tem that automatically generates parallel simulation
programs for multicomputers from a high level descrip-
tion of PDE (Partial Differential Equations). NSL
adopts an explicit FDM (Finite Difference Method)
based on a boundary-fitted coordinate system and
multi-block method.

Though there are many parallel processing systems
for PDE (e.g. //ELLPACK [3], DISTRAN [4], DEQ-
SOL [5]), only sub-optimal static load balancing has
been implemented, because the combinatorial opti-
mization problem involved is computationally difficult
to solve [6] [7]. As NSL adopts both a boundary-fitted
coordinate system and multi-block method, the opti-
mization problem can be simplified and solved by the

branch-and-bound method in practical time with off-
the-shelf computers [8] [9]. This method takes both
computation and communication time into considera-
tion, and finds the most adequate number of proces-
sors for execution, thus avoiding the use of excessive
processors that results in unnecessary delay of execu-
tion.

In previous research [8] [9], the target computer
system was assumed to be a parallel computer con-
sisting of uniform processing elements. This study
deals with a more general parallel processing environ-
ment, which consists of non-uniform processing ele-
ments. This situation is very common in distributed
processing environments. However, the optimization
problem becomes far more difficult to solve, because
non-uniformity of processors means greater numbers
of free variables.

2 Model of Computation and Commu-
nication

2.1 Parallel Execution Model

In NSL, a physical domain with a complex shape
can be described by a set of mutually connected
blocks (multi-block method). As each block can have
curvilinear borders, NSL maps a physical block of
various forms to a rectangular computational block
(boundary-fitted coordinate system). Figure 1 shows
a physical domain of 3 blocks, each of which is mapped
to the corresponding computational domain. The dot-
ted line in the figure indicates the connected border of
a block. The solid line is the real border of the do-
main, where the corresponding boundary condition is
imposed.

These features enable users to set precise bound-
ary conditions while gaining additional performance,
because a rectangular computational domain implies
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Figure 1: Physical Domain and Computational Do-
main

a regular array of data and computations that are fa-
vorable to vector/parallel operations.

NSL generates parallel explicit FDM program for
multicomputers. Each block is a 2-dimensional array
of grid points, on which difference equations are calcu-
lated. Each calculation of the difference equations can
be executed in parallel due to the nature of explicit
FDM, followed by communications to exchange data
across the connected borders. The parallel PDE solver
in NSL invokes this set of operations iteratively.

The purpose of this study is to minimize the total
execution time of this parallel PDE solver by distribut-
ing mutually connected rectangular blocks among non-
uniform processors, considering both computation and
communication time to avoid the use of excessive pro-
cessors.

2.2 Framework of Static Load Balancing

Let the number of blocks be m, and the number of
processors be n. The relationship m � n is assumed in
this paper (as in previous studies [8] [9]), because the
boundary-fitted coordinate system generally helps to
keep m small and we are usually interested in bigger n
when discussing static load balancing. Load balancing
under general conditions is left for future study.

Under this assumption, we can formulate the prob-
lem in two stages. First, one must find the best alloca-
tion of n distinguishable processors to m distinguish-
able blocks to minimize the execution time. Thus,
the best combination of processors must be chosen
to minimize the total execution time, leaving some of
them unused if necessary. The calculation time can be
made shorter by using more processors, but the com-
munication time would be longer if more processors
are used. In other words, the best balance must be
found between calculation and communication. This
is particularly important in a distributed computing
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Figure 2: Partitioning of a Block

environment, because communication time tends to
be dominant. This problem can be formulated as a
combinatorial optimization problem that is difficult to
compute [10]. Section 4 describes how this problem
can be solved.

To determine the best processor allocation, we have
to know the best partitioning of a block to a given set
of processors. Here, we decided that each processor
should deal with only one subblock, which is a rectan-
gular fragment of block. Figure 2 shows the block Bi

split into four subblocks Bs0, ..., Bs3.
This method is simple and straightforward, and is

intuitively expected to suppress the emergence of com-
munication to the possible extent. Section 3 describes
how a block can be partitioned to the allocated proces-
sors according to this rule. A more elaborate partition-
ing scheme can improve the estimated execution time
despite increasing communication, but such a method
can cause congestion of the network, resulting in unex-
pected and unjustifiable delay of execution. Therefore,
our conservative decision would be regarded as appro-
priate in most circumstances. One may consider a
more aggressive method in the case of clusters tightly
connected by a fast and dedicated network hardware,
although this is strongly dependent on the particular
implementation.

2.3 Evaluation Function

The evaluation function of this optimization prob-
lem is the execution time of each repetition of PDE
solver. This execution time T is given by

T = max
i

Ti (i = 0, 1, ..., n− 1), (1)

Ti = Tai + Tci. (2)

Here, Ti is the execution time on the i-th processor
(Pi). As each processor only deals with one subblock,
let the subblock of Pi be noted as Bsi. Tai is the
calculation time of Bsi, and Tci is the corresponding
communication time. Based on experimental results
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Figure 3: Subblock

with the NSL system, Tai is modeled as a linear func-
tion of the number of grid points in Bsi, which is noted
as Sai. Also, Tci is a linear function of the number of
grid points that participate in communication, which
is noted as Sci.

Such linear models have been widely used in past
studies, because linear models usually fit well to mea-
surement results. However, we have to note that past
studies focused on parallel computers, which usually
have powerful inter-connects between processors. In
distributed computing environments, networks tend to
be relatively weak and communication time can be far
from linear in some circumstances. We adopt a sim-
ple linear model in this paper, but a more detailed
analysis will be required in future work.

Figure 3 shows a subblock which has all its borders
connected. This is the worst case for communication,
so we show the upper bound of communication quan-
tity here for simplicity. Then, Tai and Tci are given
by

Sai = hiwi, (3)
Tai = CtaiSai + Dtai, (4)
Sci = 2δ(hi + wi + 2δ), (5)
Tci = CtciSci + CniDtci. (6)

Ctai is the time to calculate a difference equation for
one grid point on Pi. Clearly Ctai is dependent on
the performance of the processor Pi. Dtai is also
a machine-dependent constant, which represents the
overhead of the calculation. The communication pa-
rameters Ctci and Dtci are also machine-dependent
constants. Cni is the number of communication links,
which is 8 in Figure 3, and 3 for Bs0 and 2 for Bs2 in
Figure 2.

3 Partitioning

This section describes the methods to partition a
block for a given set of non-uniform processors. For
an example, see Figure 2. This partitioning is a kind
of combinatorial optimization with geometrical con-
straints. All heights and widths of subblocks must be
integers (integer constraints), and the original block
must be reconstructed from its rectangular subblocks
like a jigsaw puzzle (geometrical constraints). Under
these constraints, we have to find the best partition-
ing to minimize T described in Equation (1). This
optimization problem is so difficult that two heuristic
algorithms are presented and quantitively evaluated
against a theoretical lower bound.

3.1 Heuristic Algorithm

The most intuitive approach to partitioning would
be divide-and-conquer. First, processors are sepa-
rated into two groups. Then the block is cut straight
into two subblocks in accordance with the total per-
formance of each group. Cutting along the shorter
edge, the cross-section and consequent communication
would be minimal. This process is recursively applied
until each subblock corresponds to one processor. This
simple technique, which is generally called recursive
bisection (RB), has been widely used in scientific com-
putations [11] [12]. Plain RB is not always good but
many of its derivatives has been developed and exam-
ined [12] [13].

3.1.1 Type 1

The first algorithm (type 1) is a plain recursive bisec-
tion method. We can think of (2n − 2) ways to split
n processors into two groups at each level of RB. In-
tuitively, it seems good to split processor performance
into halves, but this grouping itself is NP-hard [10]
and still does not guarantee the best result because
this is a combinatorial optimization.

In this algorithm, the numbers of processors are
split into halves at each level of RB. Then the block is
split into two subblocks according to the ratio of ac-
cumulated processor performance in each group. This
grouping still involves

(
n

�n/2�
)

ways at each level, but
we examine every possible grouping recursively and
take the best result as the result of this approxima-
tion algorithm.

3.1.2 Type 2

The type 1 algorithm takes too much time and gives
poor performance when many processors are available.
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One reason for this is that it makes the level of recur-
sion so high that load balancing is too localized to get
a good result. There are many ways to overcome this
problem, including recursive p-section (p > 2). Here,
we examine a simple variant of the type 1 algorithm.

The second algorithm (type 2) is a modified recur-
sive bisection. Only at the first level, n processors are
equally split into �√n� groups to accelerate the parti-
tioning. The block is stripped into parallel �√n� rect-
angles in accordance with the sum of processor per-
formance. The type 1 algorithm is applied from the
second level. All possible groupings are recursively ex-
amined as in the type 1 algorithm.

Figure 4 displays how a block is partitioned for 10
non-uniform processors by the type 1 and the type 2
algorithm. The type of line shows the level of recursion
in partitioning.

3.1.3 Local load balancing

Both type 1 and type 2 algorithms concern only the
balance of calculation. In other words, they try to
make the calculation time equal by managing the num-
ber of grid points for each processor. The result is that
the faster processor tends to be a bottle-neck, because
the faster processor takes more grid points, which usu-
ally means more communication time.

Local load balancing is effective in such cases. After
calculating the temporal partitioning by approxima-
tion algorithm, some of the grid points are transfered
to level the loads between adjoining subblocks. In Fig-

Table 1: Common Parameters
Parameter Value

Dtai 10.0
Ctci 0.2
Dtci 0.1

δ 1

Table 2: Variety of Processors
Ctai #proc.

0.0100 3
0.0050 3
0.0033 2
0.0025 1
0.0020 1

ure 5, the load of Bsi can be transfered to Bsk or Bsj .
As Tj is smaller than Tk, some of the grid points of
Bsi are transfered to Bsj . This process is iteratively
applied until no improvement is derived.

3.2 Estimation of Lower Bound

Though the optimal solution is the best measure for
quantitative evaluation of heuristics, this partitioning
problem seems too difficult to solve. Therefore, we
adopt a lower bound of T , which is derived from the
following relaxed problem.

minimize T = maxi Ti

subject to HjWj =
∑

i hiwi

hi, wi ∈ R+

Let Hj and Wj be the height and the width of the
block Bj , and hi and wi be the height and the width of
a subblock Bsi which belongs to Bj . R+ means pos-
itive real numbers; that is, the integer constraints are
removed here. Also, the equation HjWj =

∑
i hiwi,

which only requires the sum of the area of subblocks to
be equal to the area of the original block, means that
the geometrical constraint is removed. This relaxed
problem is a kind of non-linear programming, but can
be easily solved.

3.3 Evaluation of Partitioning Algorithms

Figure 6 shows the quality of approximation algo-
rithms, which is normalized by the lower bound de-
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Figure 6: Evaluation of Partitioning Algorithms

rived from the relaxed problem. Note that all these re-
sults depend on simulation parameters, particularly on
the ratio of calculation time to communication time.
Here, we used the parameters shown in Table 1. Calcu-
lation latency and communication parameters are set
equal for all processors here. Type 1 and Type 2 are
the previously mentioned approximation algorithms.
Additional local load balancing is applied in “+local”
cases.

Figure 6(a) shows the results with various numbers
of processors where Ctai = 0.01 for all processors.
The geometry of the block is set to W = 500 and H
= 400. On the right side of this graph, communica-
tion becomes dominant over calculation. Regardless
of the number of processors, type 2 shows a better
performance than type 1. With type 2, local load bal-
ancing shows no effect, which it is natural because all
processors have the same Ctai in this graph.

Figure 6(b) displays the results with ten non-
uniform processors, which are shown in Table 2. A
block of a variety of grid points with a fixed aspect
ratio (W : H = 5 : 4) is partitioned for these proces-
sors. Calculation is dominant on the right side of the
graph, and communication is superior on the left side.
As the approximation algorithms only consider calcu-
lation time in partitioning, the error is bigger on the
left side. Type 1 and type 2 show similar results, but
local load balancing works well for both algorithms,
regardless of the ratio between calculation and com-
munication.

4 Processor Allocation

This section outlines the method to find the best
allocation of n distinguishable processors to m dis-
tinguishable blocks so as to minimize the execution
time. For partitioning, the type 2 algorithm described
in Section 3 is used with local load balancing.
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Figure 7: Approximation Algorithms

4.1 Branch-and-Bound

Basically, every combination of processors must be
examined to solve this kind of combinatorial optimiza-
tion problem, but this is a difficult computation prob-
lem, as mentioned in Section 2.2. Therefore, some
technique is required to reduce the search space. In
this paper, a branch-and-bound method is adopted.

Let T̄ be the execution time for the temporal fea-
sible allocation. Given a set of processors for a sub-
block Bsi, the lower bound of Ti is easily derived by
the relaxed problem mentioned in Section 3.2. If this
lower bound is bigger than T̄ , the current allocation
has no possibility of providing a more feasible solution.
Therefore, the partitioning process for this allocation
can be omitted and any groupings which include this
allocation can be pruned to reduce search space.

4.2 Approximation Algorithms

A good approximation algorithm is important for
practical use of the branch-and-bound method, be-
cause it gives the initial temporal feasible solution.
The better the algorithm, the earlier the optimiza-
tion process will finish because more search space is
pruned. Figure 7 shows the three approximation al-
gorithms examined in this paper. The following is a
rough description of these algorithms 1.

The first algorithm (approx1) initially sorts blocks
according to the number of grid points. Processors are

1The details are omitted due to lack of space.



Table 3: Simulation Parameters
Parameter Value Parameter Value

Cta0 0.0050 Dtai 10.0
Cta1 0.0033 Ctci 0.2
Cta2 0.0025 Dtci 0.1
Cta3 0.0020 δ 1

also sorted by the order of performance. This algo-
rithm then allocates processors in cyclic manner. The
second (approx2) is the same as approx1 in sorting.
It then allocates faster processors to bigger blocks in
accordance with the share of total grid points and to-
tal performance. The third (approx3) is a variant of
approx2. In approx2, the share is calculated first and
used throughout the allocation process. On the other
hand, approx3 updates the shares of blocks and the
share of processors whenever a processor is allocated.
This makes the allocation more precise.

4.3 Iterative Improvement

The approximated allocation can sometimes be im-
proved by exchanging and transferring processors be-
tween blocks. This improvement is done as follows.
First, find the block Bi which includes the slowest sub-
block. Second, find the block Bj which includes the
fastest subblock. Then, try to improve T by exchang-
ing or transferring processors between Bi and Bj . This
process is iteratively applied as long as T is improved.

4.4 Evaluation

The approximation algorithms are quantitively
evaluated against the optimal grouping derived by the
branch-and-bound method. The results of numeri-
cal simulations are shown in Figure 8. Approx1, ap-
prox2, and approx3 are the approximation algorithms
described in Section 4.2. Local means the iterative
local improvement described in Section 4.3. Best ef-
fort in the figure means the best result taken from
approx1+local, approx2+local, and approx3+local.

Simulation parameters are shown in Table 3. The
number of processors are multiples of 4, and the pro-
cessors of Cta0, ..., Cta3 are equally included. The
calculation latency parameters Dtai are all set to the
same value, as are the communication parameters Ctci

and Dtci. The height and the width of blocks are gen-
erated randomly as multiples of 10 between 100 and
1000. The result is the average of 20 trials.
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Figure 8: Evaluation of Grouping Algorithms

The error is slightly bigger when the a priori as-
sumption m � n is not satisfied well (n ≤ 8 for m = 4
and n ≤ 12 for m = 8). However, when the condi-
tion m � n holds, the error is less than 5% for this
parameter set by approx2+local and approx3+local.

The average execution time of the approximation
algorithm and the optimization algorithm is shown
in Figure 9. All measurements are done on an Intel
Pentium-II 400 MHz processor with 256 MB memory,
FreeBSD 3.1R, and GNU C compiler (ver. 2.7). The
“approx.” in Figure 9 means the sum of the execu-
tion time of approx1+local, approx2+local, and ap-
prox3+local. Approximation algorithms are reason-
ably fast, and the combinatorial optimization (“opti-
mize”) is pragmatic for 20–24 processors.

5 Conclusion and Future Work

Static load balancing in a distributed computing
environment is very challenging, because it involves
many free variables and a quite vast search space. This
study demonstrates that optimization problems can be
solved for up to 20–24 processors in practical time by
off-the-shelf computers. Our methods are based on
a general combinatorial optimization technique, and
hence applicable to a wide variety of applications if



1e-04
1e-03
1e-02
1e-01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05

4 8 12 16 20 24 28

tim
e 

[s
ec

]

n : Number of PE

approx.(m=4)
optimize(m=4)
approx.(m=8)

optimize(m=8)

Figure 9: Execution Time

calculation and communication time can be properly
modeled.

More study is required for partitioning. An exhaus-
tive search to get the optimal partitioning is desirable,
because the best partitioning would be a better mea-
sure than a lower bound to evaluate approximation
algorithms. Also, simpler and more powerful approxi-
mation algorithms should be crafted.

Currently, the grouping phase takes too much time
because the branch-and-bound method is still not ef-
fective enough. More precise lower bounds and better
approximation is required to drastically reduce search
space.
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