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SUMMARY True random number generators (TRNGs) are important
as a basis for computer security. Though there are some TRNGs composed
of analog circuit, the use of digital circuits is desired for the application
of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in free-
running ring oscillators as a source of entropy, which consume large power.
Another type of TRNG exploits the metastability of a latch to generate en-
tropy. Although this kind of TRNG has been mostly implemented with full-
custom LSI technology, this study presents an implementation based on
common FPGA technology. Our TRNG is comprised of logic gates only,
and can be integrated in any kind of logic LSI. The RS latch in our TRNG
is implemented as a hard-macro to guarantee the quality of randomness by
minimizing the signal skew and load imbalance of internal nodes. To im-
prove the quality and throughput, the output of 64–256 latches are XOR’ed.
The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20),
and passed NIST statistical test suite without post-processing. Our TRNG
with 256 latches occupies 580 slices, while achieving 12.5 Mbps through-
put.
key words: TRNG, synchronous digital circuit, FPGA, entropy

1. Introduction

Many algorithms and systems depend on random num-
bers; particularly, true random numbers are indispensable
for some applications including cryptographic applications.
Although pseudorandom number generators (PRNGs) are
widely adopted, they produce a sequence of numbers by a
deterministic algorithm; therefore, a PRNG has to be seeded
by a true random number to generate a unique and unpre-
dictable result for each occasion. In actual fact, a true ran-
dom number generator (TRNG) is a critical component in
many practical applications.

A TRNG is a hardware device to generate true random
numbers. It is typically based on a physical process, such
as thermal noise or quantum phenomenon. Though many
TRNGs are implemented with analog circuit technology, it
is difficult or expensive to integrate it with digital circuits. It
is thus desirable to compose a TRNG with digital circuits,
which can be easily integrated into a logic LSI.

This study presents a design and implementation of a
TRNG, which exploits the metastability of RS latch. This
TRNG is fully composed of digital circuits, and thus can be
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integrated into any kind of logic LSIs. Though Field Pro-
grammable Gate Array (FPGA) technology was adopted in
this study, semi- or full-custom LSI technologies are also el-
igible. FPGA implementation is worthwhile by itself, since
FPGA devices are widely accepted.

The rest of this paper is organized as follows. Section 2
gives an overview of the preceding studies on TRNGs com-
prised of digital circuit. Particularly, the metastability-based
TRNGs are described in Sect. 3. Then, Sect. 4 summarizes
the tools and measures of evaluation. Section 5 details the
design trade-offs and the implementation, and then Sect. 6
reports the quality of randomness, the logic scale, and the
throughput of our TRNG. The conclusions are given in
Sect. 7.

2. Related Studies

The TRNGs made of digital circuits are categorized by their
sources of entropy.

Fairfield et al. [1] presented an oscillator-sampling
TRNG, which generates a random bit stream by sampling
a high-frequency oscillating signal with a low-frequency
clock signal using a D-type flip-flop (DFF). Tsoi et al. [2]
evaluated an oscillator-sampling TRNG with a Xilinx Vir-
tex FPGA device, and reported that the TRNG successfully
passed NIST test [3], [4] at 5–29 kbps of generation rate.
Since an oscillator-sampling TRNG requires two indepen-
dent clock signals, Tsoi et al. [2] connected external parts
(two resistors and one capacitor) to the FPGA device. Mean-
while, this study presents a TRNG of fully synchronous dig-
ital circuit, which does not use any external parts.

No external parts are necessary if two clock signals are
generated internally. Fischer et al. [5], [6] proposed a TRNG
design that utilizes an on-chip PLL to generate the second
clock signal from the system clock, where the entropy is de-
rived from jitter of a PLL. This circuit passed NIST test
with Altera APEX 20K FPGA and Stratix FPGA. Like-
wise, Kwok and Lam [7] proposed a TRNG, which utilizes a
DCM (digital clock manager) of Xilinx Virtex II Pro FPGA
to generate the second clock signal. It is obvious that an on-
chip PLL (or its equivalent) is indispensable for this kind of
TRNG; meanwhile, this work presents a TRNG that consists
of fundamental logic gates only.

Another digital device to generate an independent
clock signal is a ring oscillator (RO), which consists of an
odd number of inverters. Sunar et al. [8] discussed a TRNG
(Sunar-type TRNG) that generates a random bit stream by
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XOR’ing the outputs of a number of free-running ROs.
Schellekens et al. [9] evaluated a Sunar-type TRNG with
a Xilinx Virtex II Pro FPGA, and reported that a TRNG
with 110 ROs of three inverters generated a random bit
stream of 2 Mbps. Other designs of TRNG that utilize
free-running ROs were also presented by Kohlbrenner and
Gaj [10], Golić [11], and Dichtl and Golić [12].

Wold and Tan [13] proposed to enhance a Sunar-type
TRNG by adding an extra D flip-flop after each free-running
RO. Their TRNG was implemented with 50 ROs, which
passed the NIST and Diehard statistical tests at a throughput
of 100 Mbps using 167 LEs of the Altera Cyclone II FPGA.
The advantages and weak points of Wold-type TRNG have
been investigated by recent studies (e.g., [14], [15]).

A serious problem of these types of TRNGs is the
power dissipation of free-running ROs. For example, the
implementation of Schellekens et al. [9] includes 110 ROs,
each of which operates at approximately 330 MHz. The en-
ergy consumption of these ROs is far from negligible. Par-
ticularly for embedded systems, it is considered to be pro-
hibitive.

This study presents a TRNG that derives entropy from
the metastability of RS latches. Since the design of this
TRNG is fully synchronous, it is possible to stop the clock
of TRNG to suppress power consumption. The operation
principles of this TRNG are detailed in Sect. 3.

3. TRNG Based on Metastability

3.1 Principles of Operation

Generally, a latch (or flip-flop) malfunctions if the setup and
hold time constraints are violated. In this case, the latch en-
ters a metastable state, where the output lingers or oscillates
between logic levels [16]. It is possible to design a TRNG
(metastability-based TRNG) that exploits this phenomenon
for random number generation.

In case of an RS latch, it is generally prohibited to acti-
vate both of R and S inputs simultaneously; if this happens,
an RS latch may become metastable and generate an indef-
inite output. Figure 1 illustrates the TRNG based on the
metastability of RS latch. When Clk = 0, this latch is stable
with (Q, Q̄) = (1, 1). Meanwhile, when Clk = 1, it becomes
stable at either (Q, Q̄) = (1, 0) or (0, 1). More precisely,
the latch enters a metastable state at the rising edge of Clk,
and eventually transitions to one of the stable states. This
process corresponds to a coin toss, which generates 1 bit of

Fig. 1 Random number generation with an RS latch.

information.
The transition is accomplished by amplifying the devi-

ation from equilibrium point (e.g., thermal noise), which re-
sults in randomness of output. The transition time naturally
deviates with a probabilistic distribution. The probability
P(t > tc) of the metastable behavior lasting longer than tc
is estimated by the following equation, where τ is a time
constant of the RS latch [16].

P(t > tc) = e−tc/τ = e−(A−1)tc/RC (1)

The time constant τ is estimated by RC/(A − 1), where A
is the gain of NAND gates of RS latch. The throughput of
a metastability-based TRNG is bounded by this probability
distribution.

Although the principle of a metastability-based TRNG
is simple, it is not easy to achieve high quality of random-
ness. Any kind of unbalance in circuit will lead to biasing
of output; e.g., the output Q might be biased if there is a
skew in Clk signal. Dispersion of circuit elements may also
lead to the bias of output, if it involves the difference in drive
strengths of two NAND gates. Even if the circuit is perfectly
balanced, the output might be affected by the previous out-
put, which may remain as a small voltage difference of in-
ternal nodes after initialization (i.e., the period of Clk = 0).

For these reasons, metastability-based TRNGs have
been regarded as unreliable and difficult for practical appli-
cations [11].

3.2 Preceding Studies on Metastability-based TRNGs

Most of the metastability-based TRNGs have been imple-
mented and evaluated with full-custom LSI technology.

Bellido et al. [17] presented a method to generate true
random numbers from the metastability of an RS latch.
The circuit was designed and implemented with close at-
tention; e.g., a dedicated initialization clock was adopted to
precharge and discharge internal nodes. The operation was
verified with a 2 μm CMOS process.

Kinniment and Chester [18] proposed a TRNG based
on R-flop, which has a differential preamplifier input fol-
lowed by a bistable latch. Their TRNG avoids the bias in
random numbers, using a negative feedback loop that ad-
justs the bias voltage of R-flop. Their design was verified
with a 0.6 μm CMOS process.

Epstein et al. [19] presented a TRNG, which was im-
plemented with 0.18 μm CMOS. The source of entropy is
metastability that is initiated by the transition from the os-
cillator mode to the latch mode. This circuit is large in logic
scale, and consumes much power in the oscillator mode.

Holleman et al. [20], [21] presented two types of
metastability-based TRNGs: DC-nulling type and FIR type.
Their TRNGs were implemented with 0.35 μm CMOS, and
passed NIST test.

Tokunaga et al. [22], [23] designed a TRNG circuit,
which is based on the metastability of an RS latch. This
circuit has a feedback loop to maximize the resolution time
of metastability, which improves the quality of randomness.
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All these TRNGs were implemented with full-custom
LSI technology. Meanwhile, our TRNG is composed of
logic gates, which can be implemented and evaluated with
an FPGA device.

There is a preceding study on the FPGA implementa-
tion of metastability-based TRNG. Danger et al. [24] pre-
sented a TRNG, which is based on the metastability caused
by setup/hold time violation of D latch. Since the D latches
embedded in an FPGA are resistant to metastability [25]–
[27], Danger implemented D latches with look-up tables
(LUTs) of FPGA. Their TRNG was manually placed and
routed, adjusting the timing of signals with wire delays.

Danger’s TRNG depends on delicate adjustment of
timing, and has problems in reproducibility, portability, and
stability. For example, their TRNG might be easily affected
by operational environment, since wire delays are very sen-
sitive to supply voltage and operating temperature. On the
other hand, the design of our TRNG is symmetrical, and
consequently robust against the change of operational envi-
ronment.

After we first presented the preliminary results of
our TRNG in January 2009 [28], a new study on a
metastability-based TRNG was presented by Varchola and
Drutarovsky [29] in August 2010. They proposed a bi-stable
structure named TERO (Transition Effect Ring Oscillator),
where oscillatory phase can be forced. Randomness is har-
vested as a variance of the number of oscillations counted
after each excitation. The circuit structure of TERO is
much similar to our TRNG, while the source of random-
ness is totally different from ours (the final state of the bi-
stable circuit). An experimental TRNG was implemented
by xor-ing two TEROs, which produced a random sequence
at 250 kbps which passed NIST statistical test without post-
processing. Although the quantitative evaluations of TERO
and our TRNG are anticipated, we leave it as a theme of
future works.

3.3 Random Number Generation with FPGA devices

As stated above, careful consideration is required to imple-
ment metastability-based TRNGs. Custom LSI technologies
have been adopted in many preceding studies, while there is
no evidence that the FPGA implementation is unreasonable
or impossible. In this section, a simple experiment is con-
ducted to examine the feasibility of FPGA implementation.

Using a Xilinx Virtex-4 FX FPGA device [30], we im-
plemented dozens of latches shown in Fig. 1. Each output
of an TRNG was multiplexed and then connected to an IO
buffer, whose output voltage was set to LVCMOS 3.3 V.
Each NAND gate was implemented with a 4-input LUT.

Figure 2 displays a typical waveform of a latch. Five
seconds of three signals (Clk, Q, and Q̄) are shown with
25 ns/div sweep rate, which were observed with a Tektronix
TDS 2024B digital storage oscilloscope. It is readily seen
that the latch generates a random output for each clock,
where the transition time has a certain probability distribu-
tion. The observed transition time has reached 100 ns (max),

Fig. 2 Observed metastability of an RS latch, which was implemented
with a Virtex-4 FPGA device.

which becomes a guideline of the sampling interval in the
following experiments.

4. Platform and Measures for Evaluation

4.1 Evaluation Platform

In this study, Xilinx ML405 board was adopted as an
evaluation platform, which includes a Virtex-4 FX FPGA
(XC4VFX20), 128 MB DDR SDRAM, and peripheral I/O
devices. For design and implementation, ISE Foundation
10.1.03 software was used with default parameters.

A Virtex-4 FX FPGA is targeted for high-performance
full-featured embedded applications, and includes one (or
more) embedded PowerPC 405 (PPC405) RISC core(s).
TRNG circuit is attached to the peripheral bus of PPC405 in
the XC4VFX20 device. The overall evaluation system con-
sists of a PPC405 processor, SDRAM, Ethernet MAC, Sys-
tem ACE (Compact Flash configuration controller), UART,
and TRNG. The respective clock frequencies are 300 MHz
for PPC405 and 100 MHz for the peripheral devices.

TRNG has a buffer of 1 MB SRAM, and generates ran-
dom data until the buffer is filled. The PPC405 processor
polls the status of TRNG, reads the data out when the buffer
is full, and then restarts TRNG for more data. Since a large
quantity of data is required for statistical tests of random-
ness, embedded Linux operating system was ported for this
system. The random data are stored in a filesystem of a
Compact Flash memory card.

The Clk signal for TRNG is generated by dividing the
peripheral bus clock by a factor 2m, where m can be set via
a control register. The duty ratio of Clk is fixed to 50% in
this study, and the consequent clock period of Clk is 20m ns.

4.2 Measures of the Quality of Randomness

This study adopts two renowned tests for randomness for
two different purposes. The Diehard test is convenient for
screening various design alternatives, since it works with a
small set of data in a short time. On the other hand, NIST
test gives comprehensive tests on a large set of data; it is
thus suited for the final verification purpose.

4.2.1 Diehard Test

The Diehard test [31] is a battery of statistical tests for mea-
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suring the quality of random numbers. This study adopts
14 tests from the Diehard test v0.2 beta [32]. Though the
Diehard v0.2 consists of 17 tests, three of them (GCD, Go-
rilla, and Overlapping permutation) were excluded since
they require large amount of data.

Each test outputs a p-value. P-values should be dis-
tributed uniformly in the interval [0,1], if the p-values are
derived from true random numbers. In this study, we adopt
the number of p-values of 0.01 < p < 0.99 as the mea-
sure of TRNG quality. Since the Diehard test outputs 229
values, approximately 225 values are expected to appear in
the interval (0.01, 0.99), if the TRNG is good enough. In
the Diehard test, some of the tests may quit without calcu-
lating p-values, whenever the test aborted by any reasons
(e.g., too little entropy). It should be noted that such tests
are automatically excluded from the evaluation result by our
measure.

The above method is neither sufficient nor exhaustive;
however, it is useful enough to reject inferior options in de-
sign process.

4.2.2 NIST Test

NIST test [3], [4] is a statistical test suite for random num-
bers, which is provided by National Institute of Standards
and Technology. NIST test consists of 15 tests, and ex-
plicitly defines the recommendations and guidelines. In this
study, NIST test version 1.8 is adopted with default param-
eters. NIST test uses 109 bit of random data to examine the
distribution of the p values, which are generated by repeat-
ing a test of 106 bit 1000 times. The input data are regarded
to be truly random if and only if they passed all tests of NIST
test suite.

5. Implementation

5.1 Design Overview

In an FPGA device, logic functions are implemented with
look-up tables (LUTs). Two NAND gates of an RS latch
(Fig. 1) are thus replaced by two LUTs in our FPGA imple-
mentation (Fig. 3), which is designated as LUT latch in the
following discussion.

Fig. 3 LUT latch: an RS latch which consists of look-up tables (LUTs)
and embedded flipflops (FFs).

Although it is possible to implement an RS latch in an
FPGA as a digital component, it is impossible to adjust the
analog imbalance caused by individual difference or process
variation. Therefore, little or no entropy might be generated
by an individual LUT latch. To harvest sufficient entropy, it
is necessary (1) to control the quality of LUT latches and (2)
to collect entropy from many LUT latches.

It is practically important to generate a qualified ran-
dom sequence from biased random numbers, which are of-
ten derived from physical random number generators. Thus,
there have been many studies on post-processing functions
for physical random number generators. In this study, we
adopt an XOR corrector [33], which is one of the oldest and
the most widely accepted methods. Figure 4 illustrates the
block diagram of our TRNG, which generates a single out-
put by XOR’ing the output of N latches. This circuit is des-
ignated by LUT latch N in the following discussion.

It should be noted that a Sunar-type TRNG is derived
by replacing LUT latches with free-running ring oscillators.
To compare our TRNG and a Sunar-type TRNG with the
same technology, we implemented and evaluated a Sunar-
type TRNG that was presented by Schellekens et al. [9] This
design is designated as Ring Osc 110, since it includes 110
ROs consisting of 3 inverters.

5.2 Implementation Details of an LUT latch

Though the internal structure of an FPGA is specific to its
family and manufacturer, the architectures of recent FPGAs
are fundamentally analogous. Logic functions are realized
by SRAM-based logic resources, which are connected by
interconnect resources. An FPGA chip consists of a hierar-
chical array of logic resources, interconnect resources (wires
and switches), and other specialized resources.

In case of the Xilinx Virtex-4 FPGA [30], a con-
figurable logic block (CLB) consists of four slices (two
SLICELs and two SLICEMs) as illustrated in Fig. 5.
SLICELs are located at the odd columns, while SLICEMs
resides at the even columns of a two-dimensional array of
slices. Both SLICEL and SLICEM include two LUTs and
two DFFs. A SLICEM additionally provides a RAM func-
tion called distributed RAM mode.

An LUT latch is implemented with two slices, as
shown in Fig. 3. These two slices cannot be placed in the
same CLB, since it is impossible to allocate the necessary
interconnection. Therefore, an LUT latch is composed by
two slices of the same kind from two different CLBs. The

Fig. 4 Block diagram of LUT latch N.
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Fig. 5 Virtex-4 CLB array [30].

other slices in these CLBs are not wasted; they are automat-
ically allocated to other purposes by CAD software.

Each LUT latch is implemented as a hard macro; i.e.,
two slices of an LUT latch are placed with a predefined col-
location and connections, which are manually designed to
minimize the skew of internal signals. For the present, we
construct an LUT latch with two SLICELs that are adjacent
in X-coordinate. That is, if Slice 1 of Fig. 3 is placed at
X1Y0 of Fig. 5, Slice 2 is placed at X3Y0. Other possibili-
ties are examined in Sect. 5.3.

The use of hard macro promotes the reproducibility of
results as well as the quality of randomness. Meanwhile,
the placement and routing of the whole TRNG is performed
by automatic place-and-route software. In other words, our
TRNG (LUT latch N) is a soft macro, which includes N
instances of a hard macro (LUT latch).

The in-FFs and out-FF of Fig. 3 are implemented with
embedded FF elements, whose clock is fed by the periph-
eral clock (100 MHz). Although two in-FFs look logically
unnecessary, they are actually important to reduce the skew
of Clk signal. Each in-FF is embedded in the same slice as
the corresponding LUT to minimize the skew from the ris-
ing edge of the peripheral clock. The out-FF is required to
decouple the capacitive load of output wire from the internal
node (Q). Without the out-FF, the capacitive load of Q be-
comes much larger than that of Q̄, which severely degrades
the randomness of the output. An out-FF for Q̄ physically
exists in Slice2, though it is not used.

To examine the effect of in-FFs and out-FFs, the fol-
lowing four designs of LUT latch were implemented and
evaluated.

In-out-FF is a design that includes both in-FFs and out-
FFs, as illustrated in Fig. 3.

In-FF is a design that includes in-FFs only, without imple-
menting out-FFs.

Out-FF is a design that includes out-FFs only, without im-
plementing in-FFs.

No-FF is a design that includes neither in-FFs nor out-FFs.

Figure 6 summarizes the results of the Diehard test,
where 32 latches were implemented with the above four de-
signs of the LUT latch. Overall, In-out-FF is the best choice.
As readily seen in Fig. 6, No-FF and Out-FF are much in-

Fig. 6 The effect of in-FFs and out-FFs on the quality of randomness.

ferior to the other two, which suggests that in-FFs are im-
portant for entropy generation. At the same time, it is also
obvious that out-FF is necessary for the best results.

In the following discussion, the design In-out-FF is
adopted for our TRNG.

5.3 Distance between two LUTs

The distance between two slices might affect the quality
and throughput of an LUT latch. There is a possibility that
longer wires may collect larger noise and consequently gen-
erate larger entropy. Meanwhile, there are many drawbacks
to a large distance between slices. Long wires should be
avoided because they consume more interconnect resources.
A long wire also incurs heavier capacitive load, which nat-
urally leads to a larger time constant and a smaller through-
put. The entropy of a latch may decrease, since the skew
tends to increase according to the length of wire. Such pros
and cons have to be examined quantitatively with experi-
ments.

This section examines the effect of the distance be-
tween two SLICELs of an LUT latch. Setting the origin to
the first SLICEL (Slice 1 in Fig. 3), various layouts were ex-
amined with various locations for the second SLICEL (Slice
2). Each layout is designated by dXiY j, where i and j are the
relative coordinates of Slice 2 in X and Y axes. As stated in
Sect. 5.2, i must be even, since two slices are the same type.
If the origin is set at X1Y0, the layout dX2Y0 designates the
latch that consists of two SLICELs at X1Y0 and X3Y0 (see
Fig. 5 for these coordinates).

Table 1 lists the results of the Diehard test for various
collocation of slices, where the number of latches was 64
and the sampling interval was 320 ns. The layout dX0Y1
was rejected by CAD, because it was impossible to connect
two SLICELs of the same CLB. As readily seen, the quality
of randomness was not improved by keeping larger distance.

It may seem strange that the results of dX4Y0 and
dX8Y0 are much worse than that of dX2Y0 and dX6Y0.
The routing resources of Virtex-4 consist of three classes of
segments: double (covering 2 logic blocks), hex (covering
6 blocks), and long (covering all blocks in a row or col-
umn) [34]. This naturally means that the number of routing
segments does not increase monotonically as the distance
between blocks increases. The discontinuous behavior in
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Table 1 The quality of randomness for various collocation of LUTs in LUT latch 64.

dX2Y0 dX4Y0 dX6Y0 dX8Y0 dX0Y2 dX0Y3 dX0Y4
pass 226 0 224 0 215 224 131

Fig. 7 Histogram of the probability for a latch to output “1”, where 64
LUT latches were examined.

Table 1 might suggest that the number of routing segments
affects the quality of TRNG. Although more detailed inves-
tigations are anticipated, further investigation on this matter
is left for future studies.

Generally speaking, it is desirable to keep a hard-macro
small, since a large hard-macro consumes more routing re-
sources and negatively affects the placement and routing of
other components. After all, we could not find any reasons
to adopt a long-distance implementation. The layout dX2Y0
is adopted in this study, since dX2Y0 is slightly better than
dX0Y2.

5.4 Individual Difference of LUT latch

Even using a hard macro, each instance of LUT latch has
different characteristics, which vary depending on individ-
ual chips or systems. Such differences occur for various
reasons: e.g., characteristic dispersion of transistor, process
variation, and operating conditions.

In this section, the individual difference in LUT
latches is examined. 64 latches were implemented on an
XC4VFX20 FPGA device, and 1 MB of output was col-
lected from each latch. The sampling interval was set to
320 ns.

Figure 7 displays the histogram of the probability of
the appearance of “1” in each output sequence. If all latches
are ideal, the histogram should show a binomial distribution
whose peak is at 50%. However, the reality is far from ideal;
17 latches are stuck at zero, while 29 latches are stuck at
one. That is, 46 latches out of 64 generated no entropy in
this experiment. A certain amount of entropy was generated
by the remaining 18 latches, though most of them exhibit
apparent biases.

Hence, it is obvious that a certain number of latches
are required for our TRNG to generate random numbers of
acceptable quality. This topic is quantitatively discussed in
Sect. 5.6.

Table 2 The quality of randomness, which was derived from LUT latch
32 with three hard macros.

Lxxx LLxx LLMM
pass 209 1 28

5.5 Placement of LUT latches

The hard macro of LUT latch is implemented by two
SLICELs of two adjacent CLBs. Since each CLB includes
two SLICELs, two adjacent CLBs can accommodate two
LUT latches. Moreover, it is also possible to compose an
LUT latch with two SLICEMs. In consequence, maximally
four LUT latches can be placed in two adjacent CLBs, using
all SLICELs and SLICEMs.

The question is whether we should place two or more
latches in a pair of CLBs. Implementing more latches in a
pair of CLBs, the whole TRNG can be laid out more com-
pactly. Meanwhile, packing many latches tightly, the diffi-
culties in routing might result in the degradation of random-
ness. If two latches are laid closely in line, the output of
these latches might show a correlation, which will degrade
the quality of randomness immediately.

To assess such situation quantitatively, we designed the
following three hard macros and committed an experiment.

Lxxx implements a single LUT latch with two SLICELs
from two adjacent CLBs. It should be noted that it is
still possible for two latches to reside in the same pair
of CLBs. Since these macros are automatically placed
by CAD software, two latches might be unexpectedly
allocated to the same pair of CLBs.

LLxx implements two LUT latches with two adjacent pairs
of SLICELs. Though two latches are laid adjacently, it
does not always mean that they reside in the same pair
of CLBs. In case of Fig. 5, the origins of two latches
may be placed at either (X1Y0, X1Y1) or (X1Y1,
X1Y2). In the former case, two latches reside in the
same pair of CLBs; in the latter case, two latches re-
side in the adjacent (but different) pairs of CLBs.

LLMM implements four LUT latches with two adja-
cent CLBs, where two latches are composed of four
SLICELs and the other two are composed of four
SLICEMs. For example, four pairs of slices correspond
to (X0Y0, X2Y0), (X0Y1, X2Y1), (X1Y0, X3Y0), and
(X1Y1, X3Y1) in Fig. 5.

Figure 8 displays three layouts of LUT latch 32 with
each of three macros (Lxxx, LLxx, and LLMM), where the
placement of hard macros is displayed. As expected, latches
are more tightly grouped with LLxx and LLMM macros.

These three implementations were evaluated with the
Diehard test at the sampling interval of 320 ns. Table 2 sum-
marizes the evaluation results, which clearly show that Lxxx
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(a) Lxxx (b) LLxx (c) LLMM

Fig. 8 The layouts of TRNG with three kinds of hard macros: Lxxx, LLxx, and LLMM.

Fig. 9 The effect of the number of latches upon the quality of random-
ness.

is superior to LLxx and LLMM. Therefore, Lxxx is adopted
in the following discussion.

There are many other possibilities to lay out latches.
For example, according to the above results, it might be
worth placing latches sparsely. Although it is possible to
control the placement manually, we did not conduct further
experiments for the following reasons. Generally speaking,
manual placement interferes in the global optimization of
CAD software; it may deteriorate the overall quality of the
system, and should be avoided whenever possible. Man-
ual placement is inevitably dependent on a specific device,
while this study aims at a portable design of TRNG. Since
sufficient quality was derived with automatic placement of
our hard macro, we could not find any good reasons for man-
ual placement in this study.

5.6 Sampling Interval and the Number of Latches

As stated in Sect. 5.1, the quality of randomness is expected
to depend on the number of latches. Figure 9 summarizes
the results of the Diehard test, where the sampling interval
was set to 320 ns. As expected, the quality improves with
the number of latches, and reaches a point of diminishing
returns with 64 latches (or more).

The sampling interval is another important factor in the
quality of randomness. The resolution time of metastability
has a probabilistic distribution, which depends on the gain

Fig. 10 The effect of sampling interval upon the quality of randomness.

and the time constant of each LUT latch. More entropy is
thus generated with a longer sampling interval, while the
throughput of TRNG decreases in inverse proportion to the
sampling interval. The optimal sampling interval has to be
determined experimentally, because it is dependent on such
factors as design, implementation, and target device.

Figure 10 summarizes the results of the Diehard test
for LUT latch 32, 64, and 128. As readily seen, 32 latches
are not enough to pass the Diehard test, even with long sam-
pling intervals. LUT latch 64 seems to pass the Diehard test
with the sampling interval larger than 120 ns; meanwhile,
LUT latch 128 passes when the sampling interval is larger
than 80 ns. This difference simply suggests that more latches
generate more entropy in the same period.

5.7 Initialization Time and Transition Time

The previous section confirmed that there is a minimal sam-
pling interval to maintain the quality of randomness. Here,
it should be reminded that the duty ratio was fixed to 50% in
the above experiments (c.f. Sect. 4.1). Actually, the respec-
tive periods of Clk = 0 and Clk = 1 correspond to differ-
ent physical processes: the initialization of internal nodes
(Clk = 0) and the resolution of metastability (Clk = 1).
Therefore, these two periods may be independently changed
to minimize the overall cycle time of Clk.

Two experiments were conducted to elucidate the bot-
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Fig. 11 The effect of initialization time on the quality of randomness.

Fig. 12 The effect of resolution time (or transition time) on the quality
of randomness.

tleneck in the minimal sampling interval of Sect. 5.6. The
number of latches is set to 64, and the TRNG was evaluated
with the Diehard test.

The first experiment examines the effect of the initial-
ization periods (Clk = 0). The circuit was evaluated for var-
ious initialization period (Clk = 0) with a fixed resolution
period of 200 ns. As readily seen in Fig. 11, the initializa-
tion period had little effect upon the quality of randomness.
No definite degradation was observed even for short periods.

In the second experiment, the effect of the resolution
period (Clk = 1) was examined. The circuit was evaluated
with a fixed initialization time of 200 ns. In Fig. 12, a defi-
nite degradation is observed at 70 ns, which is the physical
limit of this TRNG.

The results of this section suggest that the throughput
of the TRNG might be improved by changing the periods
of Clk = 0 and Clk = 1 independently. However, such
situation depends on the design and implementation of the
TRNG. This kind of optimization should be adopted op-
tionally as a part of device-dependent adjustment at the final
stage of implementation.

In the following evaluation, we adopt 50% as the duty
ratio of the Clk signal for a baseline implementation of our
TRNG.

6. Evaluation

This section summarizes the logic scale, the throughput
(generation rate), and the quality of randomness of our
TRNG.

Table 3 Logic scale (slice).

Design TRNG System

LUT latch 64 145 7013
LUT latch 128 290 7159
LUT latch 256 580 7447
Ring osc 110 359 7219

Table 3 lists the logic scales of various designs. The
column “TRNG” designates the logic scale of TRNG it-
self, while the column “System” designates the whole Linux
system including TRNG. The target device is XC4VFX20,
which contains 8544 slices. In summary, the TRNG of LUT
latch 64 occupies no more than 1.7% of the device, while the
whole system occupies about 82%. The logic scale of Ring
Osc 110 is listed as a contrast (c.f. Sect. 5.1); LUT latch 64
is as small as 40% of Ring Osc 110.

Table 4 summarizes the results of NIST test for LUT
latch 64 and Ring Osc 110, where the sampling interval was
set to 320 ns. Version 1.8 of NIST test was used with default
parameters to examine 1000 sets of 106 bit. In Table 4, the
column “Proportion” designates the ratio of passes in 1000
data sets. The tests with many items are indicated in the
form of passes/items. The failed items are emphasized in
bold style, while the aborted items are indicated by N/A (not
available).

In short, LUT latch 64 successfully passes NIST test
without post-processing, while Ring Osc 110 fails in many
items. This does not immediately mean that a Sunar-type
TRNG is inferior to our TRNG. Schellekens et al. [9] pro-
posed a post-processing circuit as a prerequisite for Sunar-
type TRNG, while the sole TRNG was evaluated in this
study. It should be also noted that the parameters of Ring
Osc 110 were not optimized for this evaluation platform.
Better results might have been derived, if a Sunar-type
TRNG was designed with optimal parameters: e.g., the
number of inverters for each RO, the number of ROs, and
the sampling interval.

Nevertheless, in our evaluation, our TRNG is superior
to Ring Osc 110 in both the logic scale and the quality of
randomness. If the post-processing circuit is added to Ring
Osc 110, the difference in logic scale becomes even larger.

To determine the maximal generation rate, the random
sequences were generated at various sampling intervals, and
were verified with NIST test. Table 5 lists the maximal gen-
eration rates of LUT latch 64, 128 and 256. The results of
preceding studies, which implemented TRNGs with FPGA
devices, are also listed in Table 5. In terms of the pub-
lished generation rate, our metastability-based TRNGs com-
pare well with the other types of TRNGs. Here, it should be
noted that the throughput of TRNG depends on various fac-
tors (e.g., evaluation platform). The throughput in Table 5
should be interpreted as a rough measure, since the target
devices and other factors are not standardized.

It is also misleading to compare the generation rate sep-
arately, since it is very easy to double the generation rate by
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Table 4 Detailed results of NIST test, where boldface indicates failure.

LUT latch 64 Ring osc 110
P-value Proportion P-value Proportion

frequency 0.907419 0.9930 0.000000 0.0000
block-frequency 0.576961 0.9870 0.000000 0.0030

cumulative sums-up 0.532132 0.9930 0.000000 0.0000
cumulative sums-down 0.175691 0.9930 0.000000 0.0000

runs 0.779188 0.9900 0.000000 0.0000
longest-run 0.670396 0.9870 0.000000 0.5260

rank 0.701366 0.9890 0.739918 0.9890
fft 0.128874 0.9880 0.006107 0.9840

nonperiodic-templates 148/148 148/148 38/148 41/148
overlapping-templates 0.846338 0.9870 0.000000 0.0000

universal 0.632955 0.9900 0.000000 0.9140
apen 0.906069 0.9860 0.000000 0.0000

random-excursions 8/8 8/8 N/A N/A
random-excursions variant 18/18 18/18 N/A N/A

serial1 0.680755 0.9890 0.000000 0.4760
serial2 0.972382 0.9950 0.038565 0.9900

linear-complexity 0.516113 0.9880 0.484646 0.9920

Table 5 The throughputs (Mbps) of various TRNGs implemented with FPGA technology.

Design category Reference Device [Mbps]

Oscillator sampling Tsoi et al. [2] Xilinx XCV300E 0.03
Fischer, Drutarovský [5] Altera EP20K200E 0.07

PLL/DLL Fischer et al. [6] Altera EP1S25 1.
Kwok, Lam [7] Xilinx XC2VP20 6.

Kohlbrenner, Gaj [10] Xilinx XCV1000 0.5
Schellekens et al. [9] Xilinx XC2VP30 2.5

Free-running oscillator Dichtl, Golić [12] Xilinx XC3S200 12.5
Wold, Tan [13] Altera Cyclone II 100.
Hada, Abe [15] Xilinx XC5VLX50 50.

D latch metastability Danger et al. [24] Altera EP1S25 20.
Transition Effect Ring Oscillator Varchola, Drutarovsky [29] Xilinx XC3S500E 0.25

(LUT latch 64) Xilinx XC4VFX20 3.85
RS latch metastability (LUT latch 128) Xilinx XC4VFX20 8.33

(LUT latch 256) Xilinx XC4VFX20 12.5

implementing two equivalent TRNGs in parallel.† Since the
generation rate and the logic scale are equally important for
TRNG, the throughput per slice should be also examined.
In case of our TRNGs, two instances of LUT latch 128 may
generate random numbers at 16.7 Mbps, while a single LUT
latch 256 achieves no more than 12.5 Mbps. According to
Tables 3 and 5, LUT latch 128 was the most area-efficient in
our three designs (LUT latch 64, 128, and 256).

7. Conclusion

This study presented the evaluation results of a
metastability-based TRNG that was implemented with a
common FPGA device. The proposed TRNG consists of
digital circuits only, and passes NIST test without any post-
processing. Our TRNG with 256 latches generates random
numbers at 12.5 Mbps with 580 slices of a Xilinx Virtex4
FPGA (XC4VFX20) device.

The power consumption of our TRNG is expected to
be modest for the following reasons; (1) the logic scale is
relatively small, and (2) the clock signal can be arbitrar-
ily stopped. Thus, our TRNG is particularly suited to the
embedded applications that are obliged to suppress power

consumption. Although many previous studies claimed
that metastability-based TRNGs are unreliable, this study
demonstrated that our TRNG can generate high-quality ran-
dom sequences with various design choices including the
number of latches, sampling interval, and clock duty ratio.

Although the fundamental functionality of our TRNG
was verified in this study, more studies are required for prac-
tical applications of this TRNG.

First of all, our TRNG should be examined against dif-
ferent power supply voltages and operating temperatures.
Since the time constant and the gain are generally depen-
dent on the voltage and temperature, the generation rate of
our TRNG may be affected by these factors to a certain ex-
tent. Meanwhile, the quality of randomness is expected to be
insensitive to these factors, because the circuit of our TRNG
is symmetric. If the operating temperature and the supply
voltage are equally applied to each element of the circuit,
the circuit should remain well-balanced to generate entropy.

The experiments with other technologies are also de-
sired. Since our TRNG simply consists of LUTs and FFs,

†Practically, close attention should be paid to avoid the corre-
lation between two TRNGs.
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the use of other technologies (e.g., Altera FPGA or semi-
custom LSI) is possible and straightforward. Although it is
important to optimize the design parameters for the adopted
technology, it may be performed systematically as detailed
in this study.

Further analyses and improvements of LUT latch are
anticipated. The designs to generate more entropy should
be explored. There are large individual differences in LUT
latches as described in Sect. 5.4, and many latches generate
no entropy (Fig. 7). This phenomenon should be examined
under various conditions to improve the implementation of
LUT latches. The latches that generate no entropy in one
situation may generate some entropy in other situations.

The investigations of statistical properties are very im-
portant for the reproducibility and the reliability of our
TRNG. The statistics of latches should be firstly examined.
The quality, or the entropy generation rate, of a latch is sup-
posed to be destined by the physical properties of its loca-
tion. It is thus necessary to examine the qualities of latches
on various locations. Secondly, the individual differences
among FPGA chips should be examined.

The quantitative modeling of our design is also essen-
tial for generalization and theoretical assurance of security.
All these important items are left for future studies.
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