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SUMMARY Davidson’s scheme utilizes the order of basic
blocks to embed a digital signature in a computer program. To
preserve the function of the original program, additional jump
instructions are inserted. This involves some overhead in both
size and performance. In our implementation, the increase in
size was between 9% and 24%. The performance of benchmark
programs was 86–102% of the original.
key words: digital signature, watermarking, computer program,
basic block, permutation

1. Introduction

Davidson and Myhrvold [1] invented a method to gener-
ate a signature on a computer program. They pointed
out that the basic blocks of a computer program can be
reordered arbitrarily without changing the behavior of
the program, if jump instructions are correctly inserted
and maintained. Their idea is to embed a signature as a
reordered sequence of basic blocks. The obvious draw-
backs of this method are the increase in program size
and the performance degradation caused by additional
jump instructions.

In this paper, Davidson’s scheme is examined in
a quantitative manner. Though there have been many
studies of digital signatures for computer programs, the
authors have never come across an empirical evaluation
of Davidson’s scheme. Thus, this study would be a
worthwhile step for future studies.

2. Davidson’s Scheme

Figure 1 illustrates the basis of Davidson’s scheme.
First, the hash values are calculated for each basic block
in the original code (a). In this study, MD5 is adopted
as the hash function. If necessary, we can add NOP
instructions to avoid hash collisions. Second, blocks
are sorted according to their hash values (b) to nor-
malize the order of basic blocks (c). Third, we reorder
basic blocks arbitrarily to embed a signature (d). To
preserve the function of the original code, we must add
some jump instructions wherever necessary (e). We can
decode a signature from the order of basic blocks (f),
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Fig. 1 Davidson’s scheme.

by comparing the signed order (e) to the initial order
(c).

Generally speaking, we have n! options in ordering
n items. That is, we can embed �log2 n !� bits of infor-
mation in n items. It is a problem that n ! is O(nn) and
difficult to handle when n is large.

It is natural and easy to split n items into groups.
Let k be a small constant (k ≤ n). Each k items make a
group. As each group can carry �log2 k !� bits, the total
capacity is given by �n/k� · �log2 k !� bits. This scheme
(Partial Permutation Scheme; PPS) was mentioned by
Ichikawa, Chiyama, and Akabane [2] for 3D polygon
models.

In this study, the PPS of k = 6 is implemented.
Though each group can carry �log2 6 !� = 9 bits, only 8
bits are used for the signature and one bit is used for
a parity bit to check integrity. Thus, the total capacity
of n basic blocks is �n/6� bytes. For denser embedding,
we have to choose a larger k.

3. Program Size and Watermark Capacity

First, the increase in program size is investigated. Ta-
ble 1 summarizes 8 program files, which include famous
benchmark programs linpackc, whetstone, dhry 1,
dhry 2, and livermore. These benchmark programs
were downloaded from Netlib [3]. The target architec-
ture is MIPS, which is simple and easy to handle. All
evaluations in this section were performed with MIPS
cross-development tools which include egcs-2.91.66 and
gdb-5.2.1.

The column “Original” in Table 1 lists the sizes of
the original object codes. The column “Signed” lists
the average size of 100 signed codes. We generated 100
random signatures for each program, embedded each of
them in the object code, and then measured the size of
each signed code. The increase in size was 9–24% of
the original size.
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Table 1 Program statistics.

#Basic Original Signed Watermark
Name Note (Compile Option) #Line #Func Block [byte] [byte] [byte]

sort.c Bubble sort (-O0) 30 1 13 440 498.4 2
findmaxmin.c Search Max and Min (-O0) 51 1 21 576 696.6 3
optmult.c Matrix Multiplication (-O0) 36 1 22 808 888.8 3
linpackc.c LINPACK (-O0 -DDP -DUNROLL) 907 12 378 23460 26409.0 61
whetstone.c Whetstone benchmark (-O0) 433 4 113 6280 6835.3 18

dhry 1.c Dhrystone (-O0 -DHZ=100 -DTIME) 385 6 129 4612 5718.0 20
dhry 2.c Dhrystone (-O0) 192 6 52 1564 1779.2 7
livermore.c Livermore benchmark (-O0) 1435 1 408 34352 37595.3 67

Table 2 Benchmark results.

Original (100 trials) Signed (100 random signatures)
Program #loop Maximum Average Minimum Maximum Average Minimum

dhry [Dhrystone] 10000000 212766.0 211170.2 208333.3 192307.7 186981.4 181818.2
linpackc [Kflops] NTIMES=10 23100.0 23078.6 22978.0 22616.0 22261.4 21890.0
whetstone [MIPS] 100000 123.5 122.2 120.5 125.0 121.6 120.5

Fig. 2 Watermark size.

As stated earlier, watermark capacity is bound by
�n/6�. However, there are more factors that prevent
us from utilizing basic blocks. For example, the first
block of each function is excluded from permutation to
keep the entry address. The “Watermark” column in
Table 1 lists the watermark capacity that is actually
available after all these factors.

Figure 2 displays the relationship between code
size and watermark capacity. Though watermark ca-
pacity is not directly related to code size, Fig. 2 shows
that they correlate to some extent. From the regression
line by least-squares method, the watermark capacity
is approximated by the 0.2% of code size in the case of
PPS (k = 6).

4. Performance Overhead

In this section, the performance overhead is examined
on a real MIPS platform. SGI Onyx Infinite Real-
ity is powered by MIPS R10000 (195MHz) processor
with 1GB main memory, IRIX 6.5.5m, and gcc-3.0.1.
Though Onyx is a parallel computer with 4 processors,
we only used one processor for performance evaluation.

Table 2 summarizes the results of Dhrystone, Lin-

pack, and Whetstone benchmarks. First, the origi-
nal benchmarks were measured 100 times, and their
maximum/average/minimum values are reported. The
“Signed” column shows the average performance of 100
signed codes for 100 random signatures. The per-
formance degradation was modest (0–11%) for these
benchmark programs.

It is very interesting that the best performance of
signed whetstone codes is 2% better than the average
of the original code. Moreover, it is even better than
the best result of the original code. There is no wonder
here because (1) redundant jump instructions can be
removed, and (2) the reordered code can show more
locality than the original. In fact, Davidson et al. [4]
have already patented this technique.

5. Conclusion

There are many other watermarking schemes for com-
puter programs. More extensive surveys and quantita-
tive investigations must be undertaken.
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