
VOL. E108-D NO. 6
JUNE 2025

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



IEICE TRANS. INF. & SYST., VOL.E108–D, NO.6 JUNE 2025
549

PAPER
Performance Enhancement of the LFSR-Based Unpredictable
Random Number Generator in Rocket Core

Takayoshi SHIKANO†, Student Member and Shuichi ICHIKAWA†a), Senior Member

SUMMARY Masaoka et al. introduced an unpredictable random num-
ber generator (URNG) using a linear feedback shift register (LFSR) embed-
ded within the CPU. Subsequent work by Kamogari and Ichikawa elucidated
the LFSR requirements and the minimal essential period to pass the Diehard
test. In this study we investigate a Rocket Core with a built-in LFSR, which
was designed according to the results of preceding studies. By sampling
the lower 32 bits of the 128-bit LFSR, a random number sequence was
generated at a rate of 49.4 Mbit/s on a 50-MHz Rocket Core. The derived
random sequence passed both the Diehard and NIST tests. Furthermore,
we propose to replace an LFSR with a Leap-ahead LFSR, which applies
its characteristic polynomial 32 times in a cycle. This improvement results
in a significantly greater generation rate of 451 Mbit/s, while maintaining
compliance with the Diehard and the NIST tests. The resource overhead
of this URNG is negligible compared to the logic scale of the base system
(LiteX/Rocket). Considering its low cost, high generation rate, high ran-
domness quality, and ease of use, the proposed design is regarded to be a
promising RNG support solution for a wide range of processors.
key words: URNG, Embedded Processors, LFSR, RISC-V, FPGA

1. Introduction

Random number generators are typically categorized into
two types: True Random Number Generators (TRNG) and
Pseudo Random Number Generators (PRNG). TRNGs gen-
erate random numbers from physical phenomena such as
thermal noise or jitter, making their output difficult to pre-
dict. Meanwhile, a TRNG requires a special hardware to uti-
lize physical phenomena, which results in a significant cost.
PRNGs generate pseudo-random numbers using determinis-
tic algorithms, which enables software implementations at a
lower cost. A weakness of PRNGs is that their output can be
predicted if their algorithm and internal state are uncovered.

Suciu et al. [1], [2] introduced an Unpredictable Ran-
dom Number Generator (URNG), which utilizes the internal
states of a CPU as its entropy source. A CPU is a compli-
cated sequential logic circuit, whose internal states change
each cycle. Suciu et al. utilized the performance coun-
ters as the entropy source, which are registers designed to
monitor the performance and the internal states of a CPU
through software. Since performance counters are widely
integrated in commercial processors, the use of performance
counters incurs no additional cost in many cases. However,

Manuscript received April 22, 2024.
Manuscript revised August 23, 2024.
Manuscript publicized December 10, 2024.

†Department of Electrical and Electronic Information Engi-
neering, Toyohashi University of Technology, Toyohashi-shi, 441–
8580 Japan.

a) E-mail: ichikawa@tut.jp
DOI: 10.1587/transinf.2024EDP7098

performance counters typically contain a limited amount of
entropy. It is thus difficult to generate high-quality random
numbers using performance counters.

Masaoka et al. [3] presented a low-cost, high-quality
URNG particularly suited for embedded systems, which in-
tegrates a Linear Feedback Shift Register (LFSR) into the
CPU. LFSR is a kind of PRNG, whose future output can be
predicted from its characteristic polynomial and its internal
states. However, the external factors such as interrupts intro-
duce fluctuations into the read-out intervals, which makes its
output practically unpredictable. Masaoka et al. repeatedly
read the value of the LFSR through software, and reported
that the resulting number sequences successfully passed the
Diehard test [4]. One of the problems of their work was a low
generation rate (max 125 kbps). Another problem was that
they did not use the NIST test [5], which is more stringent
than the Diehard test.

Kamogari and Ichikawa [6] conducted a comprehen-
sive simulation of Masaoka et al.’s method, and elucidated
the design requirements of LFSR and the minimal essential
period necessary to pass the Diehard test, assuming that the
fluctuation of sampling intervals is uniformly distributed.
Their findings indicate that the generation rate can be im-
proved to approximately 100 times higher than that achieved
by Masaoka et al., although this improvement is not yet con-
firmed through actual implementation. One of the purposes
of the present study is to enhance the generation rate of
LFSR-based URNGs and validate the upper limit of their
performance on a hardware implementation.

In the present study, we conduct hardware implementa-
tions of LFSR-based URNGs following to the design guide-
line presented by Kamogari and Ichikawa. We then evaluate
the randomness quality and generation rate of these imple-
mentations. For the quality evaluation, both the NIST test
and the Diehard test are employed. Finally, the hardware
resource utilizations are also shown to show the increase of
cost is negligible.

This manuscript is organized as follows. Section 2 out-
lines the background of this work, and then Sect. 3 describes
our implementation of Masaoka et al.’s URNG. Section 4
introduces a new design where an LFSR is replaced by a
Leap-ahead LFSR to enhance the generation rate, together
with the hardware resource utilization. Section 5 presents the
advantages of our URNG in comparison to existing random
number generators. Section 6 concludes the work.

This manuscript is based on the technical report by the
authors [7], but is substantially enhanced and revised.

Copyright © 2025 The Institute of Electronics, Information and Communication Engineers



550
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.6 JUNE 2025

2. Background

2.1 LFSR

LFSR is a kind of PRNG, which is defined as a shift reg-
ister whose input is determined by a linear function of its
previous state. This linear function is also represented by
a feedback polynomial (or characteristic polynomial) over
Galois Field of order 2 (GF(2)). The cycle of LFSR reaches
its maximal length if and only if the corresponding feed-
back polynomial is primitive over GF(2). The maximum
period of an n-bit LFSR is 2n − 1, indicating that the inter-
nal state of LFSR traverses all possible values except zero.
In Fig. 1, an example of 8-bit Fibonacci-type LFSR is illus-
trated. The feedback polynomial of this LFSR is represented
as x8 + x6 + x5 + x4 + 1, where the input bit is generated by
XORing the bits 8, 6, 5, and 4. In the following discussions,
we represent this polynomial as a tap sequence [8, 6, 5, 4].

2.2 URNG by Masaoka et al.

Masaoka et al. [3] integrated an LFSR into the PULPino pro-
cessor and generated random number sequence by reading
the LFSR through software. Though an LFSR is a PRNG,
the read-out interval is fluctuated by external interrupts and
other factors. Thus, the derived sequence becomes practi-
cally unpredictable. The evaluation environment of Masaoka
et al. is summarized in Table 1.

Though Masaoka et al. utilized the Diehard test to eval-
uate randomness quality, it is worth noting that the Diehard
test itself does not define the specific evaluation criteria of
various test results (p-values). Therefore, Masaoka et al.
adopted the evaluation criteria of Fujieda et al. [8]. Firstly,
each result is categorized into three classes (PASS / WEAK
/ FAIL) based on the criteria shown in Table 2. If many p-
values are generated by a single test, Kolmogorov-Smirnov
test (KS test) is applied on these p-values to verify that they
are uniformly distributed. The result of this test is repre-
sented by the p-value of KS test. The Diehard test consists
of 18 individual tests. If no FAIL is detected across all 18

Fig. 1 An example of 8-bit LFSR [8,6,5,4]. [6]

Table 1 Experiment environment of Masaoka et al. [3]

tests, the random sequence is regarded to pass the Diehard
test.

This present work also adopts the same evaluation cri-
teria as Masaoka et al. Further details are found in Refs. [3],
[8].

PULPino [9] is an open-source single-core microcon-
troller system, based on 32-bit RISC-V cores developed at
ETH Zurich. RISC-V architecture defines Control and Status
Registers (CSRs), accessible via csrr and csrw instructions.
Masaoka et al. implemented a 128-bit LFSR and a 32-bit
CSR in PULPino, where the CSR represents the least signif-
icant part of the LFSR. The random sequence was generated
by reading the CSR through FreeRTOS [10].

The 128-bit LFSR is driven by system clock, and the
value of CSR is iteratively read from software. The collected
values were subsequently transmitted to the host computer
and certified to pass the Diehard test. The measured gener-
ation rate was 125 kbit/s, which corresponds to the average
sampling period of approximately 5000 cycles.

2.3 Analysis by Kamogari and Ichikawa

Kamogari and Ichikawa [6] conducted a comprehensive sim-
ulation using various LFSR configurations, including differ-
ent lengths and tap sequences, to investigate the conditions
for the Masaoka et al.’s URNG to pass the Diehard test. They
observed that the presence of fluctuations in sampling inter-
vals contributes to improve the randomness quality. Further-
more, they identified the following essential conditions to
pass the Diehard test, when the tested sequence is generated
under the worst-case condition (i.e., with NO fluctuations in
sampling intervals).

• The taps of LFSR should be evenly distributed with four
taps being sufficient.

• The sampling period should be 32 cycles or longer.
• The length of LFSR should be 48 bit or longer.

Kamogari and Ichikawa [6] summarized that the ideal
generation rate can be estimated as f Mbit/s under a system
clock frequency f MHz, considering 32 bits are generated
every 32 cycles.

2.4 Leap-Ahead LFSR

Gu and Zhang [11] introduced a design to improve the gener-
ation rate of an LFSR by applying the feedback polynomial
multiple times within a single cycle, and termed it Leap-
ahead LFSR. Figure 2 (a) illustrates a conventional LFSR,
which generates one bit in each clock cycle by applying the
feedback polynomial once. In contrast, a Leap-ahead LFSR
applies the feedback polynomial m times to generate m bits

Table 2 Diehard test evaluation criteria. [8]



SHIKANO and ICHIKAWA: PERFORMANCE ENHANCEMENT OF THE LFSR-BASED UNPREDICTABLE RANDOM NUMBER GENERATOR IN ROCKET CORE
551

Fig. 2 LFSR and Leap-ahead LFSR. (©2023 IEEE) [12]

in each clock cycle (Fig. 2 (b)).
Ichikawa [12] investigated the randomness quality of

various Leap-ahead LFSRs. According to Ichikawa’s results,
Leap-ahead LFSRs with a length of 44 bit or longer pass the
Diehard test when m ≥ 32, and the NIST test when m = 64.

3. LFSR-Based URNG

3.1 Deisgn Environment

Table 3 provides an overview of the implementation envi-
ronment of this study. While Masaoka et al. adopted a
small and lightweight platform for embedded systems, we
adopted the hardware and software with higher performance
and richer functionality to explore the high-performance and
high-quality URNGs.

Our evaluation board, Arty A7-100T, contains a Xil-
inx Artix 7 FPGA, which is designed with Xilinx Vi-
vado 2022.01 software. For the present study, we adopted
LiteX [13] framework, which integrates the peripheral cir-
cuitry with the Rocket Chip. The Rocket Chip [14] is a pa-
rameterizable RISC-V processor developed at the University
of California, Berkeley. It is an open-source processor con-
figured with a 5-stage pipeline architecture. The source code
is described in Chisel language [15] and can be translated into
Verilog language. Table 4 summarizes the configuration of
the Rocket Chip in this study.

Linux serves as the operating system on the FPGA chip,
making the acquisition and processing of data much easier
than the previous study by Masaoka et al. Users can interact
with Linux from the console of the client PC, and transfer
files between the client and the evaluation board via TFTP.

In the following evaluation, we integrate a 128-bit LFSR
into the original Rocket Chip, with its least significant word
(32 bit) implemented as a CSR for random number genera-
tion. The tap sequence of the 128-bit LFSR is set to [128,
77, 35, 11], as proposed by Živković [16]. The tap sequence
[128, 7, 2, 1] of Masaoka et al. [3] was not adopted, since it
is reported to yield low-quality random sequences [6]. FPU
is not integrated in this implementation to reduce the logic
scale. The system clock frequency is 50 MHz.

Table 3 Implementation Enviroment.

Table 4 Configuration of Rocket Chip.

Fig. 3 Definition of read_csr function.

Fig. 4 A part of C code that generates random numbers.

3.2 Random Number Generation

This subsection describes the evaluation process for random
number generation and generation rate.

RISC-V architecture defines several extensions, one of
which is Zicsr extension, i.e., Control and Status Register
(CSR) Instructions [17]. The CSRR instruction, specified in
Zicsr extension, serves to read the CSR described in the pre-
vious subsection. In C language, we define a macro function
read_csr to embed a csrr instruction using an asm statement
(Fig. 3). The volatile qualifier within the asm statement
prevents the unintentional optimization during compilation
process.

Figure 4 is a code snippet that reads the data from CSR
and stores it to the corresponding array element. Each CSR
instruction has a 12-bit address field that specifies a CSR,
and the least significant word of the 128-bit LFSR is mapped
to the address 0xca0. Once NUM words have been read, the
content of the array is written to a file in binary format using
the fwrite function. Although the execution time of fwrite



552
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.6 JUNE 2025

might be dependent on the buffer size, it was set to 1 MB in
this instance.

Since the Diehard test requires approximately 100 MB
of data, the parameter NUM was set to 3,000,000 here. The
NIST test requires much larger data, while it is difficult to
accommodate all data in the memory. To overcome this
situation, we repeated the process shown in Fig. 4 to generate
the data necessary for the NIST test.

The performance indices, the random number genera-
tion rate and the average sampling period, are calculated by
the following equations.

First, the data size is calculated by Eq. (1). Each
read_csr retrieves 32 bits (4 bytes) of data, which is repeated
NUM = 3 × 106 times.

DataSize[byte] = 4[byte] × NUM (1)

The random number generation rate, denoted as Gen-
Rate, is calculated by Eq. (2). To measure the CPU time,
the Linux “time” command was utilized. The CPU time,
denoted as CPUtime, is defined as the sum of “User Time”
and “Sys Time” provided by the time command.

GenRate[Mbit/s] = 8 × DataSize[byte]
106 × CPUtime[s]

(2)

The average sampling period, denoted as SmplPeriod,
is given by Eq. (3). The average sampling time [s] is de-
termined by dividing the data size of each sampling (32
bit) by the generation rate (bit/s), and then the average sam-
pling period [cycle] is determined by multiplying the average
sampling time [s] and the CPU clock frequency, denoted by
ClkFreq [Hz]. The prefixes M in numerator and denominator
cancel each other out.

SmplPeriod[cycle] = 32[bit] × ClkFreq[MHz]
GenRate[Mbit/s] (3)

Kamogari and Ichikawa [6] noted that the randomness
quality of the generated sequence might be degraded if Sm-
plPeriod falls below 32 cycles. Although their estimation
was made without the fluctuation of sampling periods, it
is highly probable that the output sequence fails the ran-
domness test when the SmplPeriod is smaller than 32 with
minimal fluctuation.

3.3 Compiler Option

This subsection focuses on examining the impact of compiler
options on both the randomness quality and the generation
rate. Measurements were conducted with three optimize
options: no option, -O option, and -O3 option. The iteration
count NUM was set to 3,000,000 for the Diehard test.

The following two scenarios are considered.

1. In the first scenario (With fwrite), the generated random
numbers are transmitted to the application located out-
side the FPGA. Here, the fwrite function is essential to
send the data stored in the data array depicted in Fig. 4.

Table 5 Generation rate (GenRate) and the average sampling period
(SmplPeriod).

Table 6 Result of the Diehard test (Without fwrite).

2. In the second scenario (Without fwrite), the generated
random numbers are consumed within an application
implemented in the FPGA. In this case, the execution
time of fwrite must be excluded, as the loop control
time and the CSR read time is intrinsic to this scenario.

Table 5 summarizes the CPU time, GenRate, and Sm-
plPeriod for the abovementioned scenarios. The CPU time
represents the average value of three trials, and GenRate and
SmplPeriod are calculated based on this average CPU time.

In the second scenario, SmplPeriod decreases from 50
cycles (no option) to 3.55 cycles (-O and -O3). This corre-
sponds to approximately 14-fold improvement in GenRate.
However, the SmplPeriod of 3.55 cycles are much smaller
than 32 cycles, which is the threshold to pass the Diehard
test [6]. Thus, it becomes imperative to verify the random-
ness quality of the generated random sequences. It is note-
worthy that even in the first scenario (With fwrite), the loop
code to collect CSR values are exactly same as the second
scenario.

Table 6 provides the summary of the Diehard test results
on the random sequences generated in the second scenario
(Without fwrite). To ensure reproducibility, the results of
three trials are presented for each option. With no options,
the generated sequences pass the Diehard test. Contrary, the
generated sequences with -O and -O3 option fails. This is
quite consistent to the results shown in Table 5. It is also
evident that the quality of generated sequence is quite stable
and reproducible.

Practically, the optimization in compilation phase is es-
sential. It is strongly desired to achieve both the performance
improvement with optimization options and the randomness
quality of generated sequences.

While the measurement results shown in this subsection
are consistent with the simulation results shown by Kamog-
ari and Ichikawa [6], a more detailed investigation into the



SHIKANO and ICHIKAWA: PERFORMANCE ENHANCEMENT OF THE LFSR-BASED UNPREDICTABLE RANDOM NUMBER GENERATOR IN ROCKET CORE
553

Fig. 5 Generation rate control with dummy reads (#read_csr = 3).

Fig. 6 #read_csr vs. CPU time [s].

tradeoffs between generation rate and randomness quality of
generated sequences is necessary. Further experiments are
conducted in the subsequent subsection.

3.4 Randomness Quality for Various Sampling Period

This subsection focuses on the relationship between random-
ness quality and average sampling period, where adjustments
to the average sampling period can be made by inserting
dummy read_csr calls into the loop.

Figure 5 presents an example code snippet, wherein
the loop contains three read_csr calls. All three calls write
into the same array element, which means that the first two
calls are dummies to adjust the sampling intervals. In the
subsequent discussion, “#read_csr” designates the number of
read_csr calls within the loop. Despite modern compilers try
to optimize code by eliminating the dummy codes, read_csr
calls remain intact due to their volatile declaration, as shown
in Fig. 3.

Figure 6 displays the measured CPU time for various
#read_csr configurations. Despite compiling the code with
-O option, the CPU time increases according to #read_csr,
indicating that the dummy calls were not eliminated by the
compiler.

Figure 7 summarizes the randomness qualities observed
for various #read_csr values between 1 and 16. The Y-axis
represents the number of FAILs in the Diehard test, denoted
by #FAIL in the subsequent discussion. From the results of
three trials plotted in Fig. 7, it is evident that the randomness
quality exhibit consistent reproducibility.

In Fig. 7, it is notable that the randomness quality im-
proves with increasing #read_csr. Specifically, the generated
sequence passes all 18 tests when #read_csr > 9. However, in
Trial 3, a single FAIL occurs when #read_csr is 14, where the

Fig. 7 #read_csr vs. #FAIL of the Diehard Test.

Table 7 GenRate and SmplPeriod (NUM=3,000,000, #read_csr=10).

Fig. 8 Buffer size [KB] vs. CPU time [s] (with fwrite, #read_csr = 10).

failed test was OPERM5. Notably, OPERM5 of the Diehard
test is known to be buggy [18], leading to many false pos-
itives in the preceding studies. Given that no FAILs were
observed for #read_csr of 14 of Trials 1 and 2, it is reason-
able to conclude that the FAIL of OPERM5 in Trial 3 for
#read_csr of 14 is a false positive.

Table 7 summarizes the GenRate and SmplPeriod for
#read_csr of 10. In the scenario “Without fwrite”, SmplPe-
riod for #read_csr of 10 is 32.4 cycles, which is nearly compa-
rable to the necessary condition to pass the Diehard test [6].
Under this condition, the GenRate is 49.4 Mbit/s, translat-
ing to 0.988 bits for each clock cycle. In other words, this
achievement represents 98.8% of the maximum generation
rate estimated by Kamogari and Ichikawa [6] was achieved.
Furthermore, the generated random sequence successfully
passed the NIST test [5] under this condition.

Turning to the other scenario “With fwrite”, it is nec-
essary to minimize the time required for fwrite function (cf.
Fig. 6). Given that the size of buffer may influence the fwrite
time, we conducted measurements of CPU times for various



554
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.6 JUNE 2025

buffer sizes†. However, the measurement results indicate
that the buffer size has minimal impact on the CPU time in
our present implementation (Fig. 8).

4. Leap-Ahead LFSR-Based URNG

In Sect. 3, we implemented Masaoka et al.’s URNG in a
Rocket Chip, and confirmed that the random sequence gen-
erated at 98.8% of the estimated maximal rate successfully
passed the Diehard and the NIST tests. However, in the im-
plementation of the previous section, ad hoc adjustment of
the code was essential to choose optimal number of dummy
read_csr calls.

This section examines a new URNG configuration that
generates high-quality random sequence at a high generation
rate without any ad hoc code adjustments.

4.1 Generation Rate and Randomness Quality

One of the methods to remove dummy read_csr calls is to add
hardware support to interlock the access to the LFSR. When
two successive read_csr calls are performed, adequate num-
ber of wait cycles are inserted to the following call to keep
the adequate intervals between two calls. By this control,
the randomness quality of generated sequence is sustained
by keeping average sampling period at an adequate level. No
consideration is required on software side, and a simple code
such as Fig. 4 can be always used.

Interlocking is a popular control in pipeline hardware
to avoid hazards, and thus it is not difficult to imple-
ment interlocking in a processor. However, interlocking
involves pipeline bubbles and naturally accompany perfor-
mance degradation. Additionally, the control logic for in-
terlocking may have negative impact to the operational fre-
quency of the processor, which also leads to performance
degradation. Another concern is the debug and verification
efforts after modifying the control logic of the processor.

Therefore, we simply decided to replace an LFSR
(Fig. 2 (a)) with a Leap-ahead LFSR (Fig. 2 (b)) to realize
high generation rate and high randomness quality at the same
time, without modifying the control logic. In the following
discussion, NP represents the number of applications of char-
acteristic polynomial in a single cycle.

Table 8 presents the results of the Diehard test con-
ducted with the Leap-ahead LFSR. In this experiment, the
LFSR in Rocket Chip was replaced by the Leap-ahead LFSR,
and random sequences were generated using the code shown
in Fig. 4 with the -O option. The length and tap sequence of
the Leap-ahead LFSR remain the same as the original LFSR.
Other parts of the implementation were left unchanged, re-
sulting in identical execution cycles as shown in Table 5.
Since the operational frequency was the same (50 MHz), the
CPU times also remain the same as in Table 5.

In Table 8, NP=1 indicates the original LFSR, and thus
the Diehard results are identical to those presented in Table 6

†The function setvbuf was used to change the buffer size.

Table 8 Diehard test results of various Leap-ahead LFSR designs.

(-O). Though the design NP=1 fail the Diehard test, both
the designs NP=7 and NP=32 successfully pass the Diehard
test, achieving a generation rate of 451 Mbit/s and an average
sampling period of 3.55 cycles.

According to Kamogari and Ichikawa [6], the design
NP=32 is anticipated to reliably pass the Diehard test, even
when the CSR is read every cycles. In this sense, NP=32
is regarded as an assured and conservative design choice.
However, the resource utilization of the Leap-ahead LFSR is
expected to scale proportionally with NP. We thus explored
the designs of smaller NP and found that the design NP=7
successfully passes the Diehard test. The corresponding
SmplPeriod of NP=7 is 7 × 3.55 ≈ 25 cycles, which fall
shorter than the requirement (32 cycles) to pass the Diehard
test. However, it should be reminded that the simulations by
Kamogari and Ichikawa [6] was conducted with no fluctua-
tion in sampling periods, and that the fluctuations enhance
the randomness quality of generated sequences. In the de-
sign NP=7, it is regarded that various fluctuations appeared
in an actual implementation, resulting in the success of the
Diehard test at this short sampling period.

Furthermore, it is noteworthy that the generated se-
quences of NP=7 and NP=32 successfully passed the NIST
test [5], which is more stringent than the Diehard test.

4.2 Resource Usage

Table 9 summarizes the resource usages of the designs listed
in Table 8. The row labeled “Available” indicates the avail-
able number of units on the target device XC7A100T. The
“baseline” design represents the original Litex/Rocket with-
out the LFSR. As the results of CAD software may vary
between trials, the results of three trials are shown for the
designs NP=1, NP=7, and NP=32. Despite the expectation
that a larger NP leads to a larger resource usage, the mea-
sured differences are not obvious and are almost negligible
compared to the differences between trials. This observa-
tion suggests that the logic scale of the 128-bit LFSR or
Leap-ahead LFSR is relatively small compared to the overall
system framework (Litex/Rocket).

5. Discussion

The previous sections presented the implementation and
evaluation of our LFSR-based URNG. This section high-
lights the advantages of our URNG in comparison to exist-



SHIKANO and ICHIKAWA: PERFORMANCE ENHANCEMENT OF THE LFSR-BASED UNPREDICTABLE RANDOM NUMBER GENERATOR IN ROCKET CORE
555

Table 9 Hardware resources of the examined designs.

Table 10 SHA and AES implementations for Artix-7 FPGA.

ing random number generators. Since the characteristics of
a URNG lie between those of a PRNG and a TRNG, we
examine both in the following subsections.

5.1 Comparison with SHA and AES Core

Among various PRNGs, we focus on CSPRNG (Crypto-
graphically Secure PRNG), since our URNG passes the
randomness test such as the Diehard test and the NIST
test. Various types of CSPRNG are specified in NIST SP
800-90A [20], which specifies mechanisms for the deter-
ministic random bit generators (DRBG). Hash_DRBG and
CTR_DRBG are widely acknowledged examples of DRBG,
where well-established secure hash functions or block ci-
phers are utilized.

This section compares our URNG with SHA-256 (Se-
cure Hash Algorithm) and AES (Advanced Encryption Stan-
dard) cores. Since the hash function or block cipher is the
dominant component in Hash_DRBG or CTR_DRBG, eval-
uating SHA-256 or AES provides a reasonable approxima-
tion of these DRBGs. For a fair comparison, a 128-bit
Leap-ahead LFSR (NP=32) was evaluated without interface
logic and control logic.

Table 10 lists the specifications of SHA-256 and AES
cores on Xilinx Artix-7 FPGA, which is the same platform
used in our implementation. Although many commercial
IP cores are available, few publish official results on the
Artix-7, and some of the details are unavailable (e.g., FF
in Xiphera [22], [25]). The columns Performance/Area and
Performance/Clock were calculated by the authors, with the
area estimated as Area = LUT + FF/2, considering that a

single slice of Artix-7 contains 4 LUTs and 8 FFs†.
Compared to two SHA-256 cores, our URNG is much

smaller, more area-efficient, and more clock-efficient.
Compared to five AES cores, our URNG is smallest,

second most area-efficient, and third most clock-efficient.
While the faster version of DornerWorks [24] was the most
area-efficient and clock-efficient, its area is 77 times larger
than our URNG. Considering that the available number of
LUTs are 20800 in XC7A35T and 63400 in XC7A100T, it
is impractical for many applications. The smaller version of
DornerWorks [24] is slightly more clock-efficient than ours,
but our URNG is superior in other aspects.

In summary, our URNG is small and area-efficient. Ad-
ditionally, it generates indeterministic output, which is gen-
erally harder to predict than pseudo-random numbers.

5.2 Comparison with TRNG

This section discusses the pros and cons of our URNG com-
pared to various TRNGs. While there are many TRNG im-
plementations, we specifically focus on those implemented
on Xilinx Artix-7 FPGA, as in the previous section. For
general information on the FPGA implementations of RNG,
please refer to the survey by Bakiri [19].

Table 11 lists four TRNG implementations on the Artix-
7 FPGA, each with different operation principles. Since
TRNG circuits operate based on physical phenomena, they
are not considered genuine digital circuits. Thus, the

†The Area for Xiphera [22], [25] was calculated as the number
of FF is zero, which virtually serves as the lower bound of actual
implementation.



556
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.6 JUNE 2025

Table 11 TRNG implementations for Artix-7 FPGA.

Table 12 SHA and AES software implementations.

columns related to clocks have been omitted. The opera-
tional principles of four TRNGs are different. Fujieda and
Ichikawa [8] utilized the metastability of latches, while the
other three employed various types of ring-oscillators.

Compared to these four TRNG implementations, our
URNG demonstrates the highest throughput and the highest
performance per area. Since our URNG generates an un-
predictable sequence that passes both the Diehard and the
NIST tests, our URNG can serve as a high-performance and
area-efficient alternative to a TRNG in many applications.

5.3 Comparison with Software

This section compares the performance of our URNG with
software implementations of CSPRNG, specifically SHA
and AES, as discussed in Sect. 5.1.

Among many implementations of SHA or AES, this
study utilizes OpenSSL, which is widely adopted and well
optimized for many platforms. The OpenSSL software li-
brary is a robust, commercial-grade, full-featured toolkit
for general-purpose cryptography and secure communica-
tion [29], and it includes a command interface to test library
performance.

Table 12 summarizes the throughputs of SHA, AES, and
our URNG on the evaluation system described in Table 3.
Though openssl speed command reports the performances of
various block sizes (16 - 16384 bytes), Table 12 presents the
data of 16384 bytes. As readily seen, our URNG outperforms
SHA and AES by factors of 95 and 84, respectively.

In summary, our URNG achieves 84 to 95 times higher
throughput than software-based CSPRNG, with minimal
hardware overhead.

6. Conclusion

This study presented a method for generating random num-
ber sequences, where software retrieves random numbers
by reading a control register that implements the LFSR de-
signed with appropriate parameters. When a 128-bit LFSR
is implemented and its least significant 32-bit is provided as
a CSR, the random sequence is generated at 49.4 Mbit/s with
a 50-MHz processor. Importantly, the generated sequence

passes both the Diehard and NIST tests. It should be noted
that this design necessitates dummy instructions to optimize
the sampling period for achieving its maximum generation
rate.

Subsequently, this study proposed replacing the LFSR
with the Leap-ahead LFSR to enhance the generation rate
without compromising randomness quality. This new de-
sign further improves the maximum generation rate without
dummy instructions. Our implementation achieves the gen-
eration rate of 451 Mbit/s, where the generated sequence
successfully passes both the Diehard and NIST tests.

The LFSR and Leap-ahead LFSR utilized in this study
are minimal in resource usage, making their implementa-
tion cost negligible compared to the resources of the entire
system.

In summary, the proposed design can be integrated at
a very low cost. Considering its high generation rate, high
randomness quality, and ease of use, it is regarded to be a
promising RNG support solution for a wide range of proces-
sors.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant
Number 20K11733 and 24K14878.

References

[1] A. Suciu, S. Banescu, and K. Marton, “Unpredictable random num-
ber generator based on hardware performance counters,” Digital In-
formation Processing and Communications, pp.123–137, Springer-
Verlag, Berlin, 2011.

[2] K. Marton, A. Zaharia, S. Banescu, and A. Suciu, “Randomness As-
sessment of an Unpredictable Random Number Generator based on
Hardware Performance Counters,” ROMJIST, vol.20, no.2, pp.136–
169, 2017.

[3] H. Masaoka, S. Ichikawa, and N. Fujioka, “Random Number Gen-
eration from Internal LFSR and Fluctuation of Sampling Interval,”
IEEJ Trans. Industry Applications, vol.141, no.2, pp.86–92, 2021.
(in Japanese)

[4] G. Marsaglia, “Diehard battery of tests of randomness (Archived),”
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/
pub/diehard/, accessed Sept. 3, 2023.

[5] L.E. Bassham, A.L. Rukhin, J. Soto, J.R. Nechvatal, M.E. Smid,
E.B. Barker, S.D. Leigh, M. Levenson, M. Vangel, D.L. Banks, N.A.
Heckert, J.F. Dray, and S. Vo, “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications,”
NIST SP 800-22 (Rev.la), 2010.

[6] H. Kamogari and S. Ichikawa, “Evaluation of a Random Number
Generator based on an Internal Linear Feedback Shift Register,”
IEEJ Trans. Industry Applications, vol.143, no.2, pp.87–93, 2023.
(in Japanese)

http://dx.doi.org/10.1007/978-3-642-22410-2_10
http://dx.doi.org/10.1007/978-3-642-22410-2_10
http://dx.doi.org/10.1007/978-3-642-22410-2_10
http://dx.doi.org/10.1007/978-3-642-22410-2_10
http://dx.doi.org/10.1541/ieejias.141.86
http://dx.doi.org/10.1541/ieejias.141.86
http://dx.doi.org/10.1541/ieejias.141.86
http://dx.doi.org/10.1541/ieejias.141.86
http://dx.doi.org/10.6028/nist.sp.800-22r1a
http://dx.doi.org/10.6028/nist.sp.800-22r1a
http://dx.doi.org/10.6028/nist.sp.800-22r1a
http://dx.doi.org/10.6028/nist.sp.800-22r1a
http://dx.doi.org/10.6028/nist.sp.800-22r1a
http://dx.doi.org/10.1541/ieejias.143.87
http://dx.doi.org/10.1541/ieejias.143.87
http://dx.doi.org/10.1541/ieejias.143.87
http://dx.doi.org/10.1541/ieejias.143.87


SHIKANO and ICHIKAWA: PERFORMANCE ENHANCEMENT OF THE LFSR-BASED UNPREDICTABLE RANDOM NUMBER GENERATOR IN ROCKET CORE
557

[7] T. Shikano and S. Ichikawa, “Random number generation on the
Rocket core with a built-in LFSR,” IEICE Technical Report, vol.123,
no.374, pp.1–6, 2024. (in Japanese)

[8] N. Fujieda and S. Ichikawa, “A latch-latch composition of
metastability-based true random number generator for Xilinx FP-
GAs,” IEICE Electron. Express, vol.15, no.10, Art no.20180386,
May 2018.

[9] OpenHW Group, “pulp-platform/pulpino,” GitHub Inc., https://
github.com/pulp-platform/pulpino/tree/master/fpga, accessed Sept.
3, 2023.

[10] Amazon Web Services., “The FreeRTOS Kernel, Market Leading
De-facto Standard and Cross Platform RTOS kernel,” https://www.
freertos.org/, accessed Sept. 3, 2023.

[11] X.C. Gu and M.X. Zhang, “Uniform Random Number Generator
Using Leap Ahead LFSR Architecture,” Proc. 2009 Intl. Conf. on
Computer and Communications Security, pp.150–154, 2009.

[12] S. Ichikawa, “Pseudo-Random Number Generation by Staggered
Sampling of LFSR,” Proc. Eleventh Intl. Symp. on Computing and
Networking (CANDAR 2023), pp.134–140, Nov. 2023.

[13] G.L. Somlo, “Toward a Trustable, Self-Hosting Computer System,”
2020 IEEE Security and Privacy Workshops (SPW), San Francisco,
CA, USA, pp.136–143, 2020.

[14] K. Asanović et al., “The Rocket Chip Generator,” Technical Report
UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, USA, April 2016.

[15] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in
a Scala embedded language,” Proc. 49th Annual Design Automation
Conference (DAC 2012), San Francisco, CA, USA, ACM, pp.1216–
1225, June 2012.

[16] M. Živković, “A table of primitive binary polynomials,” Math. Com-
put., vol.62, no.205, pp.385–386, 1994.

[17] A. Waterman, K. Asanovic, J. Hauser, ed., The RISC-V Instruction
Set Manual Volume II: Privileged Architecture, version 20211203,
RISC-V International, Dec. 2021.

[18] R. Brown, “Robert G. Brown’s General Tools Page,” https://
webhome.phy.duke.edu/˜rgb/General/dieharder.php, accessed Dec.
22, 2023.

[19] M. Bakiri, C. Guyeux, J.-F. Couchot, and A.K. Oudjida, “Sur-
vey on hardware implementation of random number generators on
FPGA: Theory and experimental analyses,” Computer Science Re-
view, vol.27, pp.135–153, Feb. 2018.

[20] E. Barker and J. Kelsey, “Recommendation for Random Number
Generation Using Deterministic Random Bit Generators,” NIST SP
800-90A (Rev. 1), June 2015.

[21] Berten, “SHA-2 Hash Crypto Engine,” BDS011 (v1.03), Feb. 2023.
[22] Xiphera, “XIP3327C: HKDF/HMAC/SHA-256/SHA-512 (Product

Brief, ver. 1.0),” 20 Sept. 2023.
[23] VISENGI, “AES 128/192/256.” Accessed: 9 Aug. 2024. [online].

https://www.visengi.com/products/aes
[24] DornerWorks, “AES-HS: High-Speed Encryption IP Core,” 2017.
[25] Xiphera, “XIP1123B: Versatile AES-256 IP Core (Product Brief,

ver. 1.0),” 20 Sept. 2023.
[26] N. Fujieda, “On the Feasibility of TERO-Based True Random

Number Generator on Xilinx FPGAs,” Proc. 30th Intl. Conf.
Field-Programmable Logic and Applications (FPL 2020), Sweden,
pp.103–108, 2020.

[27] R. Serrano, C. Duran, T.-T. Hoang, M. Sarmiento, K.-D. Nguyen, A.
Tsukamoto, K. Suzaki, and C.-K. Pham, “A Fully Digital True Ran-
dom Number Generator With Entropy Source Based in Frequency
Collapse,” IEEE Access, vol.9, pp.105748–105755, July 2021.

[28] Berten, “TRNG-P200 IP Core,” BDS006 (v1.09), May 2024.
[29] OpenSSL, “Library.” Accessed: 22 Aug. 2024. [online]. https://

openssl-library.org/

Takayoshi Shikano received his B.E. de-
gree in 2023 from the Department of Electrical
and Electronic Information Engineering of Toyo-
hashi University of Technology. Presently, he is
studying for his master’s degree at that institu-
tion.

Shuichi Ichikawa received his D.S. degree
in Information Science from the University of
Tokyo in 1991. He has been affiliated with Mit-
subishi Electric Corporation (1991-1994), Na-
goya University (1994-1996), Toyohashi Univer-
sity of Technology (1997-2011), and Numazu
College of Technology (2011-2012). Since
2012, he is a professor of the Department of Elec-
trical and Electronic Information Engineering of
Toyohashi University of Technology. His re-
search interests include parallel processing, cus-

tom computing machinery, and information security. He is a member of
IEEE, ACM, IEICE, IEEJ, and IPSJ.

http://dx.doi.org/10.1587/elex.15.20180386
http://dx.doi.org/10.1587/elex.15.20180386
http://dx.doi.org/10.1587/elex.15.20180386
http://dx.doi.org/10.1587/elex.15.20180386
http://dx.doi.org/10.1109/icccs.2009.11
http://dx.doi.org/10.1109/icccs.2009.11
http://dx.doi.org/10.1109/icccs.2009.11
http://dx.doi.org/10.1109/candar60563.2023.00025
http://dx.doi.org/10.1109/candar60563.2023.00025
http://dx.doi.org/10.1109/candar60563.2023.00025
http://dx.doi.org/10.1109/spw50608.2020.00039
http://dx.doi.org/10.1109/spw50608.2020.00039
http://dx.doi.org/10.1109/spw50608.2020.00039
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1090/s0025-5718-1994-1201073-4
http://dx.doi.org/10.1090/s0025-5718-1994-1201073-4
http://dx.doi.org/10.1016/j.cosrev.2018.01.002
http://dx.doi.org/10.1016/j.cosrev.2018.01.002
http://dx.doi.org/10.1016/j.cosrev.2018.01.002
http://dx.doi.org/10.1016/j.cosrev.2018.01.002
http://dx.doi.org/10.6028/nist.sp.800-90ar1
http://dx.doi.org/10.6028/nist.sp.800-90ar1
http://dx.doi.org/10.6028/nist.sp.800-90ar1
http://dx.doi.org/10.1109/fpl50879.2020.00027
http://dx.doi.org/10.1109/fpl50879.2020.00027
http://dx.doi.org/10.1109/fpl50879.2020.00027
http://dx.doi.org/10.1109/fpl50879.2020.00027
http://dx.doi.org/10.1109/access.2021.3099534
http://dx.doi.org/10.1109/access.2021.3099534
http://dx.doi.org/10.1109/access.2021.3099534
http://dx.doi.org/10.1109/access.2021.3099534

