
1940
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

PAPER Special Section on Forefront Computing

Design and Implementation of an On-Line Quality Control System
for Latch-Based True Random Number Generator

Naoki FUJIEDA†a), Member, Shuichi ICHIKAWA††b), Senior Member,
Ryusei OYA†, and Hitomi KISHIBE††, Nonmembers

SUMMARY This paper presents a design and an implementation of an
on-line quality control method for a TRNG (True Random Number Gener-
ator) on an FPGA. It is based on a TRNG with RS latches and a temporal
XOR corrector, which can make a trade-off between throughput and ran-
domness quality by changing the number of accumulations by XOR. The
goal of our method is to increase the throughput within the range of keep-
ing the quality of output random numbers. In order to detect a sign of the
loss of quality from the TRNG in parallel with random number generation,
our method distinguishes random bitstrings to be tested from those to be
output. The test bitstring is generated with the fewer number of accumu-
lations than that of the output bitstring. The number of accumulations will
be increased if the test bitstring fails in the randomness test. We designed
and evaluated a prototype of on-line quality control system, using a Zynq–
7000 FPGA SoC. The results indicate that the TRNG with the proposed
method achieved 1.91–2.63 Mbits/s of throughput with 16 latches, follow-
ing the change of the quality of output random numbers. The total number
of logic elements in the prototype system with 16 latches was comparable
to an existing system with 256 latches, without quality control capabilities.
key words: FPGA, true random number generator, randomness test

1. Introduction

Unpredictable random numbers are essential for many se-
curity applications [1]. They are, for example, used as
encryption keys for cryptographic algorithms and nonces
of challenge-response protocols. A TRNG (True Ran-
dom Number Generator) obtains them from a physical phe-
nomenon, which cannot be predicted in principle. There are
many types of TRNGs according to physical phenomena on
which they rely [2], [3].

An on-the-fly randomness test circuit is a key compo-
nent for TRNGs to deal with the variation of quality of ran-
dom numbers. It can be used in three ways: anomaly detec-
tion, autocalibration, and quality control/assurance. Since
the quality may vary with operating conditions such as sup-
ply voltage and temperature, an attacker may interfere with
it. It is known that such an attack to, for example, a TRNG
based on ring oscillators is possible [4]. A sign of failure
should be detected as an anomaly to stop the generation or

Manuscript received December 12, 2022.
Manuscript publicized March 24, 2023.
†The authors are with Department of Electrical and Electronics

Engineering, Faculty of Engineering, Aichi Institute of Technol-
ogy, Toyota-shi, 470–0392 Japan.
††The authors are with Department of Electrical and Electronic

Information Engineering, Toyohashi University of Technology,
Toyohashi-shi, 441–8580 Japan.

a) E-mail: nfujieda@aitech.ac.jp
b) E-mail: ichikawa@ieee.org

DOI: 10.1587/transinf.2023PAP0001

warn the system about it [5]. Some types of TRNGs can con-
trol their behavior by a parameter input. They need an au-
tocalibration mechanism to find a proper parameter for each
individual device and/or operating condition [6], [7]. Some
other types of TRNGs are designed to improve its random-
ness at the cost of increasing power consumption or decreas-
ing bit rate of generation. On-line quality control techniques
have been recently proposed for them to make a better trade-
off [8], [9].

This paper presents a design and an implementation of
an on-line quality control method for a TRNG, along with
on-the-fly randomness test circuits. Our method is based
on a latch-based TRNG implemented on an FPGA (Field-
Programmable Gate Array) [10], [11]. By increasing the
number of temporal accumulation of the output of latches,
it can improve the randomness quality at the sacrifice of bit
rate of generation [12].

The proposed method has two important differences
from other quality control methods. First, it adopts a rel-
atively complicated randomness test, called the count-the-
ones test, as one of the on-the-fly tests. Although there
have been FPGA implementations of complicated random-
ness tests [13], [14], they require too many logic elements to
be used as a component of a quality control method. By a
careful selection of test and an optimized design of dataflow,
we successfully implemented a complicated test with a hard-
ware cost not much different from simple tests. Second, the
proposed method distinguishes the random bitstrings to be
tested from those to be output. The test bitstring is generated
to contain less entropy. This is done by controlling the num-
ber of accumulations for the test bitstring to be smaller than
that for the output bitstring. This enables the output bitstring
to have an enough margin in entropy, so that the TRNG can
continue outputting random numbers even though the test
bitstring fails at an on-the-fly test. We developed a proto-
type of the proposed quality control system and evaluated
it using PYNQ–Z1 FPGA SoC development boards [15] to
validate this idea.

The content of this paper is based on two previously
presented studies: one was presented in the IEEJ Techni-
cal Meeting on Innovative Industrial System held in March
2021 [16]; the other was presented in the 10th Interna-
tional Symposium on Computing and Networking (CAN-
DAR 2022) [17]. Major differences from the previous stud-
ies are summarized as follows:

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers

FUJIEDA et al.: DESIGN AND IMPLEMENTATION OF AN ON-LINE QUALITY CONTROL SYSTEM FOR LATCH-BASED TRNG
1941

• a new evaluation system, explained in Sect. 3, has been
developed based on the PYNQ platform for improved
generality and reliability;
• statistical tests are analyzed in more detail in the pre-

liminary evaluation described in Sect. 4;
• an implementation of a short-term test, which com-

plements the count-the-ones test, is introduced in
Sect. 5.3; and
• a prototype of the proposed quality control system is

described and evaluated in Sects. 6 and 7, respectively.

This paper is organized as follows. In Sect. 2, the latch-
based TRNG is briefly explained and the existing hardware
implementations of on-the-fly testing of randomness quality
are reviewed. Our evaluation system and preliminary eval-
uation results are presented in Sects. 3 and 4, respectively.
Section 5 describes hardware implementations of on-the-
fly randomness tests used as components of the proposed
method. In Sect. 6, we present the design of the proposed
on-line quality control method and the implementation of
TRNG core module with it. We evaluate the prototype sys-
tem in Sect. 7 and then conclude the paper in Sect. 8.

2. Background

2.1 Latch-based TRNG

The latch-based TRNG utilizes the metastability of an RS
latch. Figure 1 depicts an RS latch, where both of the input
ports (R and S) are connected to the same signal, CTRL.
When the CTRL signal is set to ‘0,’ output of the both
NAND gates becomes ‘1.’ When CTRL rises to ‘1,’ the
latch transits into the metastable state and starts to oscil-
late [18]. It eventually settles at one of the stable states and
the output of one of the NAND gates, Q, becomes either ‘0’
or ‘1.’ Ideally, the probability that Q becomes ‘1’ is 1/2 be-
cause which stable state the latch will go is determined by
noises (such as thermal noise) amplified in the ring of the
latch. The latch thus outputs Q as a random bit. After that,
CTRL is set to ‘0’ again to start a new cycle of random bit
generation.

Although an ideal, completely balanced RS latch
would generate random bits with perfect randomness, there
exists an imbalance in the ring of the latch in practice and the
probability usually becomes far from 1/2. This means that
the amount of information (or entropy) from one cycle of
one latch becomes much less than one bit. Therefore, latch-
based TRNG aggregates information from multiple latches
using XOR (exclusive OR) operation and obtains (almost)
one bit of entropy per one output bit. This technique is
called XOR correction.

XOR correction can be applied either spatially or tem-
porally (Fig. 2). Spatial implementation (Fig. 2 (a)) aggre-
gates the output of multiple latches with an XOR gate [10],
[11]. Spatial/temporal implementation (Fig. 2 (b)) addition-
ally accumulates the results of the multiple cycles [12]. In
the latter implementation, the output becomes valid every

Fig. 1 RS latch where two input ports become in common.

Fig. 2 Implementations of XOR corrector.

time a predefined number of cycles are completed. This
means the bit rate of generation is divided by the number of
accumulations. Temporal correction can be done in a unit of
multiple bits. For example, an existing implementation [12]
conducts accumulation by a 32-bit word.

Another type of TRNGs that utilizes the metastability
of an RS latch is called TERO (Transition Effect Ring Os-
cillator) [19], [20]. It focuses on the number of times of os-
cillation before the latch transits into a stable state, rather
than the final output of the latch. The design principle of the
TERO-based TRNG is different from the latch-based one. It
has to let the latch stay at the metastable state for a while
in order to increase the variation of the number of times of
oscillation. To this end, some TERO implementations add
buffers (or even number of inverters) to the ring [2].

The most serious weakness of the original TERO was
that its behaviour varied widely with devices and place-
ment of logic elements [2]. This problem has recently
been overcome by making the path of the ring config-
urable by an input parameter [21]. The organization of the
ring was inspired from a TRNG based on coherent sam-
pling (COSO) [6] and an autocalibration mechanism in the
COSO-based TRNG might also be adopted. However, the
mechanism only estimates the likeliness to have enough en-
tropy by measuring the difference of oscillating frequencies
(in the case of COSO) or the average number of times of
oscillation (in the case of TERO): the randomness of the
output is not checked directly.

2.2 Hardware Implementation of Randomness Test

Table 1 enumerates recent studies on hardware implemen-
tations of randomness tests. The column labeled Aim rep-
resents the main target of each circuit. The column la-
beled # describes the number of tests implemented. Some
implementations adopted tests defined in standards such

1942
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

Table 1 List of hardware implementations of randomness tests.

Authors Year Aim # Origin

Santoro et al. [13] 2009 AD 1 AIS–31
Varchola & Drutarovský [22] 2009 AD 4 FIPS 140–2

Vaskova et al. [14] 2011 SU 4 Diehard
Veljković et al. [23] 2012 AD 8 NIST 800–22

Suresh et al. [24] 2013 AD 6 NIST 800–22
Yang et al. [25] 2015 AD 9 NIST 800–22
Yang et al. [26] 2015 AD 4 None
Cao et al. [27] 2016 AD 4 None

Hussain et al. [28] 2016 AD 7 NIST 800–22
Grujić et al. [29] 2017 AD 3 None
Martin et al. [30] 2018 AD 7 FIPS/NIST

Gonzalez et al. [9] 2018 QC 3 Yang et al. [26]
Carreira et al. [7] 2020 AC 4 None
Gantel et al. [31] 2020 QC 3 NIST 800–90B

* AD = Anomaly Detection
* SU = Speed-Up processing of test
* QC = Quality Control
* AC = AutoCalibration

as AIS–31 [32], FIPS 140–2 [33], NIST 800–22 [34], and
NIST 800–90B [35]. Another implementation targeted tests
in the well-known diehard test suite [36]. The origin of im-
plemented tests are summarized in the column labeled Ori-
gin.

Most of early studies used the implemented circuits
for anomaly detection: they detect the loss of entropy in a
TRNG due to malicious attacks and to alarm systems. Only
some latest studies adopt an on-the-fly test circuit as a com-
ponent of autocalibration and quality control systems. We
briefly introduce such studies in the following paragraphs.

Gonzalez et al. [9] proposed a method to control a
TRNG using the results of on-line tests. They used two
types of TRNGs based on ring oscillators and self-timed
rings, respectively, and turned off some components accord-
ing to the test results. In short, the purpose of their study is
power reduction, which is different from our study.

Carreira et al. [7] presented an autocalibration method
for a TRNG, based on a variant of TERO [20]. This type of
TRNG might give biased output in case of taking too long
time to generate random bits. To filter out such a case, the
method checks the number of clock cycles for generation,
in addition to generated output itself, when it searchs for an
appropriate parameter. The idea of estimating entropy from
the behavior of circuit is also seen in a quality control system
proposed by Chen et al. [8]. The motivation of their work is
quite similar to ours, but their system did not test the output
directly.

Gantel et al. [31] proposed a validation and post-
processing platform for TRNGs. Test results are used to
determine if the output of the TRNG needs to be post-
processed. Although the XOR correction (explained in
Sect. 2.1) can be considered as one of the post-processing
methods, our method is designed to let the TRNG out-
put have enough entropy and require no additional post-
processing.

In this study, we propose an on-line quality control
method designed for the latch-based TRNG. A short-term,

simple tests, adopted in the most of the recent studies, might
overlook a small bias of random numbers. A long-term,
complicated tests generally requires a large number of logic
elements. We selected the count-the-ones test in the diehard
suite [36] as the implementation target. It has a strong capa-
bility of detecting a bias in output of the latch-based TRNG,
and moreover, it can be implemented with a minimal amount
of hardware. We demonstrate them in the following sections
of this paper.

To the best of our knowledge, Vaskova et al. [14] have
presented the only hardware implementation of tests from
the diehard suite. However, the goal of their research is
to accelerate the processing of time-consuming tests. The
amount of hardware of their implementation was too large
to be used for on-the-fly testing of a TRNG.

3. Evaluation System

3.1 System Description

Figure 3 describes the simplified block diagram of our eval-
uation system, which collects random bitstrings with various
numbers of latches. The system runs on a Digilent PYNQ–
Z1 development board, which includes a Xilinx Zynq
XC7Z020 FPGA SoC, an Ethernet port, and a MicroSD slot.
A Zynq SoC consists of processing system (PS) and pro-
grammable logic (PL). The PS is a dual-core Arm Cortex-
A9 microprocessor that can run Linux, while the PL is an
FPGA fabric where the TRNG is implemented. The PS and
the PL usually communicate each other via AXI (Advanced
eXtensible Interface) interconnects.

The TRNG is packaged into an IP (Intellectual Prop-
erty), whose internal structure is depicted in the lower half of
Fig. 3. Generated random numbers are sent out as a stream,
which means the TRNG core does not care where they shall
be stored in the main memory. It is managed by an existing
AXI DMA (Direct Memory Access) core. Both the TRNG
and the DMA cores are controlled by the PS. A reset signal
generater, which is also present in the PL, is omitted from
Fig. 3.

The TRNG IP consists of a TRNG core, an AXI (Lite)
interface, a stream controller, and a stream FIFO. The
TRNG to be evaluated is required to have specific ports and
instantiated as a TRNG core. The AXI interface receives
control signals and arguments, which include the number of
bytes to send, a parameter for the TRNG core, etc., from the
PS. The stream controller manages the number of sent bytes
and packs data from the TRNG core into a stream of 32-bit
words as needed. The words are stored to the stream FIFO
and sent out as AXI stream.

Figure 4 depicts the internal block diagram of the
TRNG core used in the preliminary evaluation in Sect. 4.
Eight latches compose a set of latches, where their outputs
are corrected by XOR. The TRNG has 32 sets of latches and
XOR output of either of 1–32 set(s) is selected by a 32-to-1
multiplexer. As a result, XOR output of either of 8, 16, . . . ,
or 256 latches is obtained. The cycle time of the input of

FUJIEDA et al.: DESIGN AND IMPLEMENTATION OF AN ON-LINE QUALITY CONTROL SYSTEM FOR LATCH-BASED TRNG
1943

Fig. 3 Simplified block diagram of the evaluation system.

Fig. 4 Block diagram of the TRNG core for the preliminary evalution.

latches is set to 80 ns.
We run the evaluation system on the PYNQ plat-

form [15], which includes Linux, an execution environment
of Python, and libraries for circuits on the PL. After copying
the programming (.bit) file of the evaluation system to the
specific directory, we reconfigure the PL and drive the cores
using a Python script written on a Web browser (Jupyter
Notebook). Collected random numbers are saved in the
PYNQ’s file system built on a MicroSD card. The source
code of the evaluation system is available at a GitHub repos-
itory [37].

3.2 Validation

Figure 5 is a screenshot of Jupyter Notebook running on
the PYNQ platform. This Python script reconfigures the PL
side, initializes the TRNG and DMA cores, and writes the
TRNG output to a file using double buffering. Since the
cycle time of the TRNG is set to 80 ns, the ideal through-
put of the TRNG is approximately 12.5 Mbit/s. The script
took about 8.021 s to obtain and write 100 Mbit of TRNG
output, which meant the measured throughput was about
12.47 Mbit/s. As long as used in this study, a bottleneck
does not exist in data transfer, which means generated ran-
dom numbers are not discarded due to limitations of the sys-
tem.

4. Preliminary Evaluation

This section presents a preliminary evaluation using the sys-
tem described in Sect. 3. The purpose of the preliminary
evaluation is to select randomness tests that have a high
capability of detecting a flaw of output of the latch-based

Fig. 5 A screenshot of Jupyter Notebook on PYNQ in collecting a ran-
dom bitstring.

Table 2 Evaluation criteria for p-values.

Condition Condition
Decision (for diehard) (for NIST)

P (pass) 0.005 ≤ p < 0.995 0.01 ≤ p

W (weakly pass) 10−6 ≤ p < 0.005 or 2 × 10−6 ≤ p < 0.01
0.995 ≤ p < 1 − 10−6

F (fail) p < 10−6 or 1 − 10−6 ≤ p p < 2 × 10−6

TRNG. They will be the candidates for being adopted by
the proposed quality control method.

4.1 Methodology

The quality of random numbers can be evaluated by statis-
tical tests. Basically, the randomness quality of the latch-
based TRNG is degraded when the number of latches or the
number of accumulations (or both) is small. To let an on-line
quality control method work effectively, we have to find an
appropriate statistical test, where a small defect will result
in a p-value extremely close to 0 or 1.

For this reason, we conduct a preliminary evaluation
using the statistical tests in the diehard test suite [36] and the
NIST 800–22 test suite [34]. The diehard and NIST suites
consist of 18 and 15 kinds of tests, respectively, each of
which gives 1–148 p-values per random bitstring. If ideal
random numbers are given to the test, p-values will be uni-
formly distributed in the range of [0, 1).

In the preliminary evaluation, we group p-values into
three categories: pass (P), weakly pass (W), and fail (F),
according to the conditions shown in Table 2. Since the ex-
pected occurrence probability of F is 2 × 10−6, an F means
that the generated random numbers are likely to be far from

1944
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

ideal. On the other hand, it is a normal behavior that a W
is occurred in about 1% of probability because the expected
probability of W is 0.01 − 2 × 10−6. Categorization criteria
are slightly different between the two suites, which comes
from whether the tests assume one-sided or two-sided.

In a similar way to the preceding study [10], we deter-
mine pass or fail of each kind of test in the following way.
If a test outputs four or less p-values, their categories are
checked. When they include one or more Fs, the result of the
test is F. When they include no Fs but one or more Ws, the
result is W. When all p-values are classified into P, the result
is also P. If a test gives five or more p-values, their unifor-
mity is checked by the Kolmogorov–Smirnov (KS) test and
the test result is determined by the category of the resulting
p-value.

The preliminary evaluation was conducted with a sin-
gle PYNQ-Z1 board. We generated 1.5 Gbit (15×100 Mbit)
of random bitstring for each number of latches using our
evaluation system described in Sect. 3. We then simulate
the temporal XOR correction by software and obtained a
100 Mbit of bitstring for each number of accumulations.
Bitstrings without temporal correction are also tested; in this
case, the number of accumulations is regarded as zero. The
total number of bitstrings to be tested was 256, because we
have 16 kinds of the number of latches (8, 16, . . . , 128) and
16 kinds of the number of accumulations (0, 1, . . . , 15). The
quality of each bitstring is checked by the test suites. In the
NIST tests, only the first 1 Mbit of each bitstring was tested.

4.2 Results

Figure 6 plots the proportion of the p-values generated from
256 bitstrings for each test, categorized into F and W. It
clearly shows that the likelihood of failing at a test varies
widely with the kind of test.

It is also observed that some diehard tests gave larger
proportion of F than NIST tests. In the NIST suite, a p-value
of an individual attempt of a test is not used for determining
a pass or fail of a TRNG. Instead, a set of p-values with
multiple bitstrings for each test are used by a final analysis,
as we will explain later in Sect. 7.1. In short, a p-value ex-
tremely close to 0 or 1 for each attempt is not necessary in
the NIST tests.

There are four tests with excessively high proportion of
W: the overlapping 5-permutation test (9.2%), the overlap-
ping sums test (6.6%), the random excursions test (6.7%),
and the random excursions variant test (27.6%). Regarding
the first two tests from the diehard suite, it has been reported
that their reliability is low: they have higher possibility of
giving false positives than expected [38]. For the last two
tests from the NIST suite, probably it was not appropriate
to conduct the KS test to resultant p-values. They have an-
other problem that they cannot be conducted to all bitstrings.
For these reasons, we exclude these four tests and focus on
remaining 29 tests in the subsequent discussions.

Fig. 6 Proportion of the results for each test.

Fig. 7 Heat map of the results of the count-the-ones (stream) test.

Fig. 8 Heat map of the overall results of the selected 29 tests.

4.3 Discussion

Figures 7 and 8 describe the results of the count-the-ones
(stream) test and all of the selected tests, respectively, for
each number of accumulations (X-axis) and each number of

FUJIEDA et al.: DESIGN AND IMPLEMENTATION OF AN ON-LINE QUALITY CONTROL SYSTEM FOR LATCH-BASED TRNG
1945

latches (Y-axis). In Fig. 7, results of P, W, and F is colored in
green, yellow, and red, respectively. In Fig. 8, results with-
out Fs correspond to green, while results with one or more
Fs correspond to red. The more tests fail at, the darker the
color.

These heat maps show that the results of the count-the-
ones (stream) test well represent the overall results of the
tests. In other words, this test has a high capability of de-
tecting a flaw of output of the latch-based TRNG. There are
some other types of tests gave similar results in the diehard
suite: the binary rank (6x8) test, the OPSO (overlapping
pairs sparse occupancy) test, the OQSO (overlapping quads
sparse occupancy) test, the DNA test, the count-the-ones
(specific) test, the squeeze test, and the craps test. By care-
fully considering the ease of implementation by hardware
for them, we decided to adopt the count-the-ones (stream)
test as one of the on-the-fly randomness tests for the pro-
posed quality control method. In the following sections, we
simply refer the count-the-ones (stream) test to as the count-
the-ones test.

5. Randomness Testing Circuits

5.1 Analysis of Count-the-Ones Test

We briefly explain the count-the-ones test here. The test uses
256,004 bytes of random numbers. It first translates each in-
put byte into an alphabet by the number of ones in the byte,
according to Table 3. It then forms sets of 256,000 over-
lapping 5-letter and 4-letter words, counts the frequencies
of each word, and calculates the χ2 value for each set. The
distribution of the difference between the χ2 values, repre-
sented as chsq in the rest of this paper, follows the χ2 distri-
bution with degree of freedom of 2,500: its mean and stan-
dard deviation becomes 2,500 and

√
5,000, respectively.

Our considerations on hardware implementation of the
count-the-ones test are threefold. The first is an efficient
use of ROMs. The calculation of the χ2 value requires the
expected number of occurrence, ev, for each word. It can
be calculated in advance from the number of total words
(256,000) and the occurrence probabilities of the alphabets
in the word (see Table 3). This means the ev values can
be stored in a ROM. Using the fact that ‘A’ and ‘E’, ‘B’
and ‘D’ have the same probability, respectively, the size of
the ROM can be reduced [17]. Since ev is also used as a
divisor, another ROM for its reciprocal, ev r, is prepared to
transform a division into a multiplication.

The second consideration is the use of fixed-point arith-
metic, applied to the calculation of the chsq value. More
specifically, the variables ev and chsq are stored as fixed-
point numbers. Since the bit widths of the fractional por-
tions of the variables affect the computational precision, a
trade-off between the error and the amount of hardware has
to be made [17].

The last consideration is the exclusion of the calcula-
tion of the p-value from hardware implementation. Note
that the p-value of the test is not necessarily calculated: if

Table 3 Mapping of alphabets in the count-the-ones test.

of ones 0–2 3 4 5 6–8
Alphabet A B C D E

Probability 37/256 56/256 70/256 56/256 37/256
Encoding 000 010 100 011 001

Fig. 9 Block diagram of our implementation of the count-the-ones
test [17].

we only have to know whether the p-value is within a cer-
tain range, we can check if the chsq value is within the cor-
responding range. For example, the test result being an F
corresponds to the chsq value meeting |chsq − 2500| ≥ 237.
For this reason, we let the chsq value be the test result, in-
stead of the p-value.

5.2 Implementation of Count-the-Ones Test

Figure 9 depicts a block diagram of our implementation of
the count-the-ones test. Since we coded the test in C++ and
used high-level synthesis (HLS) to obtain the test circuit,
pipeline registers inserted automatically by an HLS tool are
omitted from the figure. RAMs and ROMs are shown in
gray. The byte to letter ROM translates a byte into the cor-
responding alphabet. The f req4 and f req5 RAMs store the
numbers of occurrence of 4-letter and 5-letter words, respec-
tively.

The diagram has three sections: calculation of indices,
increment of counters, and calculation of the chsq value.
If the test circuit receives an input byte, the indices of
RAMs are calculated in the first section and the correspond-
ing counters are incremented in the second section, in a
pipelined structure. This pipeline proceeds once in 3 cy-
cles because the number of occurrence in the RAMs must
be read, incremented, and written. The total number of cy-
cles to complete these sections is estimated at 768,012.

The chsq value is calculated in the third section. A
counter value is read from one of the RAMs as ov. The
expected value of the corresponding word and its recipro-
cal are read from ROMs as ev and ev r, respectively. From
them, a term of χ2 value, (ov − ev)2 × ev r, is calculated. It
is added to or subtracted from the chsq value, according to
which RAM was read. After the accumulation for all of the
words, the circuit halts and outputs the final chsq value. This
section approximately takes 3,750 cycles because the num-

1946
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

Fig. 10 Block diagram of our implementation of short-term test, a vari-
ant of monobit frequency test.

ber of possible 4-letter and 5-letter words is 54+55 = 3,750.
In addition, RAMs must be reset to zero as an initialization.
This takes approximately 3,125 cycles.

In summary, the number of cycles to complete the
test is estimated at 774,887. This means the throughput
of the test circuit becomes approximately 2.64 bits/cycle
(� 256,004 × 8/774,887). According to a report after HLS,
the actual number of cycles became very close to this esti-
mation [17]. Since the throughput of the test circuit is much
larger than that of the latch-based TRNG, the test circuit
cannot be a performance bottleneck.

5.3 Implementation of Short-Term Test

In addition to the count-the-ones test for checking long-term
quality of random numbers, we implement a short-term test
based on the monobit frequency test. There are two goals
of the short-term test. One is to deal with a characteristic
of the latch-based TRNG that the decline of the randomness
quality occurs suddenly and successively [10]. The other is
to terminate the random number generation when the latches
do not generate random bits at all for some reasons.

The test gets the difference between adjacent 32-bit
words by XOR and applies the monobit test (i.e., counting
the number of ones in a block of a fixed length) to them.
When the latches constantly generates zeros or ones, the ac-
cumulated output word becomes the same as the previous
word or its inversion, respectively. In the case of outputting
inversion, the occurrence probability of both zeros and ones
becomes 1/2. This case cannot be detected by simply ap-
plying the monobit test to the accumulated output. This is
why the difference between adjacent words is required.

Figure 10 depicts the block diagram of the imple-
mented short-term test circuit. To let the circuit be integrated
with the count-the-ones test, it has a 8-bit data input. The
latest four bytes of data are stored in a shift register and the
difference from the previous word is obtained by an XOR.
The number of ones in the difference is accumulated. This
procedure is repeated for 2,000 bytes (16,000 bits) and the
sum of the number of ones is output as a result. It approx-
imately follows a normal distribution with a mean of 8,000
and a standard deviation of

√
4,000.

Fig. 11 Block diagram of the TRNG core with the proposed control
method.

6. Proposed TRNG with On-Line Quality Control

6.1 Control Method

The basic strategy of the proposed on-line quality control
method is that the number of accumulations for output ran-
dom numbers is sufficiently larger than the maximum num-
ber of accumulations with which the on-line test fails. Fig-
ures 7 and 8 showed that the results of the individual test
was similar to the overall results, but not the same. On the
boundary between F and the others, the test result might go
back and forth between them over time.

Figure 11 describes the block diagram of the TRNG
core that adopts the proposed method. The proposed core is
roughly separated into three parts. The upper part includes
the latch-based TRNG, accumulation, and serial-to-parallel
(S/P) conversion. Since the output of the TRNG is accumu-
lated by word, the S/P conversion circuit is moved from the
stream controller to the TRNG core. The center part has a
pair of internal FIFOes. One of them is for output and the
other is for the on-line test. The size of the output FIFO
is larger than a block size of the short-term test and it does
not send out data until it becomes full. In other words, the
input of the short-term test remains unsent in the core until
the test is passed. The bottom part includes the online test
circuit and a FIFO control circuit according to the test result.

The accumulated word is valid only when a predefined
number of accumulations are completed. This is done by
two base-n counters that give write enable (WE) signals of
the FIFOes. The number of accumulations for the test FIFO
is stored in a register as c, while that for the output FIFO is
the sum of c + m, where m is a margin given as a parame-
ter of the core. When the count-the-ones test is completed,
it assesses whether the result is within a certain range or
not. If it is (i.e., passing the test), c is decremented; other-
wise (i.e., failing at the test), c is incremented. When the
short-term test is completed and the result is a fail, c is in-
cremented and the output FIFO is reset, to avoid the failed
random number being output. The value of c cannot be less
than one. If c exceeds a predefined maximum number (31 in
our evaluation), random number generation is terminated by

FUJIEDA et al.: DESIGN AND IMPLEMENTATION OF AN ON-LINE QUALITY CONTROL SYSTEM FOR LATCH-BASED TRNG
1947

considering that the latches cannot generate random bits any
more. For comparison, the short-term test can be disabled
by a parameter.

In this paper, the range of the result of each test to be
considered as a pass is set to 2500 ± 336 in the count-the-
ones test and 8000 ± 400 in the short-term test. The prob-
ability of occurrence of a false positive is 2.0 × 10−6 and
2.7 × 10−10, respectively. Since a fail in the short-term test
comes with a reset of the output FIFO, its significance level
is set to be smaller.

6.2 Implementation of Proposed TRNG Core

The online test circuit is described as a C++ function
and synthesized with the Xilinx Vitis HLS tool. An HLS
interface axis pragma is added to each of the argu-
ments, or the input data and the output result, to use AXI
Stream. An HLS interface ap ctrl none pragma is
given to the function itself to start the circuit automatically
and repeatedly. These changes make it easy to be integrated
with the other part of the core. The synthesized circuit is
exported as Verilog files and instantiated from the core.

In the fixed-point arithmetic of the count-the-ones test,
the lengths of the fractional portions of the chsq and ev val-
ues are set to 18 and 0, respectively. This pair of parameters
have been referred to as the resource-saving candidate [17],
which has about 1.5% of error in the chsq value on aver-
age but can be implemented with a minimal hardware. Af-
ter the change of interfaces, the amount of hardware became
slightly smaller: the required number of LUTs and flip-flops
were 358 and 414, respectively.

The short-term test, described in Sect. 5.3, is included
in the same circuit. It is conducted repeatedly while the
number of occurrence of words is counted in the count-the-
ones test. Since the lengths of input of the count-the-ones
and the short-term tests are 256 kB and 2 kB, respectively,
128 results of the short-term tests are obtained during one
iteration of the count-the-ones test. After the integration of
the short-term test, the number of LUTs and flip-flops be-
came 423 and 483, respectively. This meant the additional
logic elements for the short-term test were 65 LUTs and 69
flip-flops.

7. Evaluation

7.1 Methodology

Our evaluation of the proposed method was conducted us-
ing three PYNQ–Z1 boards, which were different from one
used in the preliminary evaluation. The TRNG core in the
evaluation system, explained in Sect. 3, was replaced with
the proposed core. Unlike the preliminary evaluation, the
number of latches is fixed at logic synthesis and cannot be
changed as a parameter opened to software. This means we
synthesized a different hardware overlay for each number of
latches. The version of the PYNQ system was 2.7, based on
Ubuntu 20.04. Xilinx Vitis HLS 2021.1 and Xilinx Vivado

2020.2 were used for HLS and logic synthesis, respectively.
The version of Vivado is slightly older than Vitis HLS be-
cause it is recommended by PYNQ 2.7.

We obtain 109 bits (1 Gbits) of random bitstring for
each combination of the following parameters:

• the identifier of PYNQ board (ID): A, B, and C;
• the number of latches (l): 8, 16, 32, and 64;
• the margin of the number of accumulation(m): 1, 2, and

3; and
• the short-term test (Monobit): enable and disable.

If the bitstring is successfully obtained, it is divided
into 1,000 106-bit substrings and assessed by the NIST 800–
22 test suite [34]. The generation bit rate is also calculated
and recorded from the elapsed time. If the random num-
ber generation has been terminated, or the number of accu-
mulation has reached the upper limit, the event is recorded
instead.

When the NIST test is conducted with many substrings,
there are two criteria for determining pass or fail. One is
the proportion of the number of substrings with p-values
of 0.01 or more. If it is within a range of 99% ± 3σ, the
test is considered as a pass. Its significance level is about
0.27%. The other is the p-value of a test on the flatness of
the distribution of the obtained p-values. If this “p-value of
p-values” is 0.0001 or more, the test is considered as a pass.
The significance level of this criterion is 0.01%.

We summarize the overall result of the NIST suite by
classifying it into three categories: PASS, fail, and FAIL.
We mark it fail if the bitstring fails based on either of the
criteria in any of the tests; we mark it FAIL if the bitstring
fails based on both of the criteria.

7.2 Results on Random Number Generation

Table 4 summarizes the results on random number genera-
tion. Each row corresponds to the board identifier (ID) and
the number of latches (l). Each column corresponds to the
margin of accumulation (m) and the use of the short-term
test (Monobit). The first line in each cell is the overall result
of the NIST suite. The case that the random number gen-
eration is terminated is depicted as Abort. The second line
represents the generation bit rate in Mbit/s.

If the short-term test is enabled, the bitstrings basically
passed the test even with m = 1. If disabled, the bitstrings
sometimes failed in the test with m = 1. Regarding the bit
rate of generation, enabling the short-term test had almost
the same effect as increasing m by one or two.

To examine the behavior with the short-term test in
more detail, we monitored the time variation of the number
of accumulation, or c. Figure 12 plots its result in the case of
l = 16 and m = 1, using the board A. The X-axis represents
the position of corresponding output bitstring. The value
of c basically fluctuated around three or four but rapidly
increased three times in the range of 600–800 MB. When
a rapid decline of randomness quality is detected, the pro-
posed method increases the value of c to a range of expected

1948
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

Table 5 The number of logic elements used in the PL (FPGA) part of the evaluation system.

Preliminary (l = 256) Proposed (l = 16)
LUT FF BRAM DSP LUT FF BRAM DSP

TRNG IP Core 780 1,071 1.0 0 784 906 5.5 2
AXI-Lite I/F 71 111 0.0 0 78 117 0.0 0

TRNG and Controller 676 902 0.0 0 631 669 4.5 2
Stream FIFO 64 58 1.0 0 68 58 1.0 0

AXI DMA 792 1,219 1.0 0 781 1,219 1.0 0
AXI Interconnects 860 1,041 0.0 0 849 1,026 0.0 0
Reset Generator 17 33 0.0 0 17 33 0.0 0

Total 2,448 3,364 2.0 0 2,430 3,184 6.5 2

Table 4 Summary of results on random number generation and the NIST
test suite to generated bitstrings.

Monobit Enable Disable
ID l m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

A 8 Abort Abort Abort Abort Abort Abort
- - - - - -

16 PASS PASS PASS FAIL PASS fail
2.44 1.99 1.74 2.94 2.54 2.20

32 PASS PASS PASS PASS PASS PASS
2.29 1.93 1.66 3.15 2.48 1.93

64 fail PASS PASS PASS PASS PASS
3.89 2.92 2.31 5.02 3.45 2.75

B 8 PASS fail fail FAIL PASS PASS
1.70 1.56 1.40 2.14 1.81 1.71

16 PASS PASS fail FAIL PASS PASS
1.91 1.67 1.51 2.69 2.35 1.92

32 fail PASS fail fail fail PASS
2.13 1.84 1.61 3.34 2.59 2.19

64 PASS PASS PASS PASS fail fail
4.10 3.09 2.47 5.67 3.84 2.96

C 8 PASS PASS PASS FAIL PASS fail
1.01 0.94 0.99 1.92 1.69 1.37

16 PASS PASS PASS PASS PASS fail
2.63 2.10 1.64 3.31 2.80 2.17

32 PASS PASS PASS PASS PASS PASS
1.93 2.00 1.76 3.20 2.76 2.25

64 PASS PASS fail fail PASS PASS
3.94 3.02 2.40 5.19 3.78 2.85

Fig. 12 Time variation of the number of accumulation when the short-
term test is enabled.

safety, while discarding the output of the TRNG. After that,
it decreases c gradually, confirming that the tested random
numbers pass the count-the-ones test. If it could not follow
a rapid decline of randomness quality, some of the random
substrings would have a bias and exhibit a poor p-value. We
think this is why some of the bitstrings failed in the NIST

Table 6 Comparison of the number of logic elements and the bit rate of
generation among various TRNG cores.

Type LUT FF Bit Rate

TC-TERO [21] 48 30 2.03
Configurable COSO [6] 69 33 1.37

Latch w/o accumulation [10] 676 902 12.50
Latch w/ accumulation [12] 69 95 0.83
This work l = 8 613 645 1.01–1.70

l = 16 631 669 1.91–2.63
l = 32 664 717 1.93–2.29
l = 64 735 813 3.89–4.10

suite when the short-term test is disabled and m = 1.
However, a small decline of randomness quality might

still be overlooked. There are a larger number of failed bit-
strings based on the criterion of proportion only than ex-
pected. Since we conducted 15 kinds of tests for each of
66 random bitstrings, we expect two or three false positives
(66×15×0.27/100 � 2.7). The number of bitstrings marked
f ail was much larger. Perhaps a very small number of sub-
strings still have a bias and the proportion of substrings with
p-values of 0.01 or more is slightly smaller than 99%. This
result suggests that an adjustment of some parameters, such
as the range of the result considered as a pass the imple-
mented tests, is still needed, though we leave it for future
work.

7.3 Hardware Resource Usage

Table 5 compares the number of logic elements — LUTs,
flip-flops (FF), block RAMs (BRAM), and DSP units —
in the FPGA part of the system, from the one used in
the preliminary evaluation. The TRNG in the preliminary
evaluation basically corresponds to the original latch-based
TRNG [10] and up to 256 latches are available, whereas nei-
ther accumulation nor quality control features is supported.
The case of 16 latches (l = 16) is shown in the table. The
proposed system used a comparable number of LUTs and
flip-flops, though additional 4.5 (36-kbit) block RAM and
2 DSPs were required. Only for the TRNG IP core, it
only used less than 2% of available LUTs and flip-flops of
PYNQ–Z1, a low-end FPGA SoC development board.

Table 6 enumerates various types of TRNGs imple-
mented as TRNG cores of our evaluation system. The bit
rate of generation is shown in Mbit/s. Note that existing
TRNGs do not include hardware for quality control and as-

FUJIEDA et al.: DESIGN AND IMPLEMENTATION OF AN ON-LINE QUALITY CONTROL SYSTEM FOR LATCH-BASED TRNG
1949

surance. Due to accumulation, the bit rate of generation
with the proposed method decreased to an order of Mbit/s.
However, it is larger than the case where the number of ac-
cumulation is fixed [12] and still comparable to other types
of recently proposed TRNGs [6], [21]. The increase of the
number of logic elements per latch was about 2.2 LUTs
and 3 flip-flops, as estimated in the original latch-based
TRNG [10].

To the best of our knowledge, there were no quality
control methods for TRNGs that consider both short-term
and long-term tendencies of the TRNG output. We have
realized the first one with a minimal amount of hardware, by
a careful design of randomness tests and a control method.

8. Conclusion

In this paper, we presented a design and an implementa-
tion of an on-line quality control method for the latch-based
TRNG, in order to increase the throughput while keeping the
quality of output random numbers. According to the evalu-
ation with a prototype of the control system, the latch-based
TRNG with the proposed method achieved 1.91–2.63 Mbit/s
of throughput with 16 latches. We also confirmed that the
method can follow the change of the quality of output ran-
dom numbers quickly.

We are planning to conduct further experiments of, for
example, seeing if the method is tolerant of changes of op-
erating conditions or external attacks. We will also have to
find causes of a rapid decline of randomness quality of the
latch-based TRNG and a way to fundamentally solve the
problem. Further improvements on reliability and through-
put to our method may be achieved by examining new on-
the-fly tests. It is also left for future studies to apply our ap-
proach to other types of TRNGs, such as TERO and COSO.

Acknowledgments

A part of this study was supported by JSPS Grants-in-
Aid for Scientific Research (KAKENHI) Grant Number
21K12164 and 20K11733.

References

[1] Ç. K. Koç, ed., Cryptographic Engineering, Springer, Berlin, 2009.
[2] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A

survey of AIS-20/31 compliant TRNG cores suitable for FPGA de-
vices,” Proc. 26th International Conference on Field Programmable
Logic and Applications, Lausanne, Switzerland, pp.1–10, 2016.

[3] B. Sunar, “True random number generators for cryptography,” Cryp-
tographic Engineering, ed. Ç.K. Koç, Berlin, pp.55–73, Springer,
2009.

[4] A.T. Markettos and S.W. Moore, “The Frequency Injection
Attack on Ring-Oscillator-Based True Random Number Genera-
tors,” Proc. Workshop on Cryptographic Hardware and Embedded
Systems 2009, Lausanne, Switzerland, vol.5747, pp.317–331, 2009.

[5] B. Yang, V. Rožić, N. Mentens, W. Dehaene, and I. Verbauwhede,
“TOTAL: TRNG on-the-fly testing for attack detection using
lightweight hardware,” Proc. 2016 Design, Automation & Test in
Europe Conference & Exhibition, Dresden, Germany, pp.127–132,
2016.

[6] A. Peetarmans, V. Rožić, and I. Verbauwhede, “A highly-portable
true random number generator based on coherent sampling,” Proc.
29th International Conference on Field Programmable Logic and
Applications, Barcelona, Spain, pp.218–224, 2019.

[7] L.B. Carreira, P. Danielson, A.A. Rahimi, M. Luppe, and S. Gupta,
“Low-Latency Reconfigurable Entropy Digital True Random Num-
ber Generator With Bias Detection and Correction,” IEEE Trans.
Circ. Syst. I, vol.67, no.5, pp.1562–1575, 2020.

[8] T. Chen, Y. Ma, J. Lin, Y. Cao, N. Lv, and J. Jing, “A lightweight full
entropy TRNG with on-chip entropy assurance,” IEEE Trans. Com-
put. Aided Des. Integrated Circ. Syst., vol.40, no.12, pp.2431–2444,
2021.

[9] H.M. Gonzalez, E.S.M. Heredia, and L.E. Arrontes, “Dy-
namic control of entropy and power consumption in TRNGs
for IoT applications,” IEEE Electron. Express, vol.15, no.2,
pp.20171157:1–20171157:11, 2018.

[10] N. Fujieda and S. Ichikawa, “A latch-latch composition of
metastability-based true random number generator for Xilinx
FPGAs,” IEICE Electron. Express, vol.15, no.10, pp.20180386:1–
20180386:12, 2018.

[11] H. Hata and S. Ichikawa, “FPGA implementation of metastability-
based true random number generator,” IEICE Trans. Info. Syst.,
vol.E95-D, no.2, pp.426–436, 2012.

[12] N. Fujieda, H. Kishibe, and S. Ichikawa, “A light-weight implemen-
tation of latch-based true random number generator,” Proc. 15th In-
ternational Wireless Communication and Mobile Computing Con-
ference, Tangier, Morocco, pp.901–906, 2019.

[13] R. Santoro, A. Tisserand, O. Sentieys, and S. Roy, “Arithmetic oper-
ators for on-the-fly evaluation of TRNGs,” Proc. SPIE 7444, Mathe-
matics for Signal and Information Processing, vol.7444, no.74440S,
San Diego, CA, pp.1–12, 2009.

[14] A. Vaskova, C. López-Ongil, E.S. Millán, A. Jiménez-Horas, and L.
Entrena, “Accelerating secure circuit design with hardware imple-
mentation of Diehard Battery of tests of randomness,” Proc. IEEE
17th International On-Line Testing Symposium, Athens, Greece,
pp.179–181, 2011.

[15] Xilinx Inc., “PYNQ: Python productivity.” http://www.pynq.io/, ac-
cessed Nov. 7, 2022.

[16] H. Kishibe, S. Ichikawa, and N. Fujieda, “An investigation of latch-
based lightweight TRNG,” IEEJ Technical Meeting on Innovative
Industrial System, no.IIS–21–012, pp.1–6, 2021 (in Japanese).

[17] R. Oya, N. Fujieda, and S. Ichikawa, “An HLS implementation
of on-the-fly randomness test for TRNGs,” Proc. 10th Interna-
tional Symposium on Computing and Networking, Himeji, Japan,
pp.151–157, 2022.

[18] L.M. Reyneri, D. Del Corso, and B. Sacco, “Oscillatory metastabil-
ity in homogeneous and inhomogeneous flip-flops,” IEEE J. Solid-
State Circ., vol.25, no.1, pp.254–264, 1990.

[19] M. Varchola and M. Drutarovský, “New high entropy element for
FPGA based true random number generators,” Proc. Workshop
on Cryptographic Hardware and Embedded Systems 2010, Santa
Barbara, CA, vol.6225, pp.351–365, 2010.

[20] K. Yang, D. Blaauw, and D. Sylvester, “An all-digital edge racing
true random number generator robust against PVT variations,” IEEE
J. Solid-State Circuits, vol.51, no.4, pp.1022–1031, 2016.

[21] N. Fujieda, “On the feasibility of TERO-based true random number
generator on Xilinx FPGAs,” Proc. 30th International Conference on
Field Programmable Logic and Applications, Göthenburg, Sweden,
pp.103–108, 2020.

[22] M. Varchola and M. Drutarovský, “Embedded Platform for Au-
tomatic Testing and Optimizing of FPGA Based Cryptographic
True Random Number Generators,” Radioengineering, vol.18, no.4,
pp.631–638, 2009.

[23] F. Veljković, V. Rožić, and I. Verbauwhede, “Low-cost implementa-
tions of on-the-fly tests for random number generators,” Proc. 2012
Design, Automation & Test in Europe Conference & Exhibition,
Dresden, Germany, pp.959–964, 2012.

http://dx.doi.org/10.1109/fpl.2016.7577379
http://dx.doi.org/10.1007/978-0-387-71817-0_4
http://dx.doi.org/10.1007/978-3-642-04138-9_23
http://dx.doi.org/10.1109/fpl.2019.00041
http://dx.doi.org/10.1109/tcsi.2019.2960694
http://dx.doi.org/10.1109/tcad.2021.3096464
http://dx.doi.org/10.1587/elex.14.20171157
http://dx.doi.org/10.1587/elex.15.20180386
http://dx.doi.org/10.1587/transinf.e95.d.426
http://dx.doi.org/10.1109/iwcmc.2019.8766516
http://dx.doi.org/10.1117/12.826336
http://dx.doi.org/10.1109/iolts.2011.5993835
http://dx.doi.org/10.1109/candar57322.2022.00028
http://dx.doi.org/10.1109/4.50312
http://dx.doi.org/10.1007/978-3-642-15031-9_24
http://dx.doi.org/10.1109/jssc.2016.2519383
http://dx.doi.org/10.1109/fpl50879.2020.00027

1950
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

[24] V.B. Suresh, D. Antonioli, and W.P. Burleson, “On-chip lightweight
implementation of reduced NIST randomness test suite,” Proc. 2013
IEEE International Symposium on Hardware-Oriented Security and
Trust, Austin, TX, pp.93–98, 2013.

[25] B. Yang, V. Rožić, N. Mentens, W. Dehaene, and I. Verbauwhede,
“Embedded HW/SW platform for on-the-fly testing of true ran-
dom number generators,” Proc. 2015 Design, Automation & Test
in Europe Conference & Exhibition, Grenoble, France, pp.345–350,
2015.

[26] B. Yang, V. Rožić, N. Mentens, and I. Verbauwhede, “On-the-fly
tests for non-ideal true random number generators,” Proc. 2015
IEEE International Symposium on Circuits and Systems, Lisbon,
Portugal, pp.2017–2020, 2015.

[27] Y. Cao, V. Rožić, B. Yang, J. Balasch, and I. Verbauwhede, “Ex-
ploring active manipulation attacks on the TERO random number
generator,” Proc. IEEE 59th International Midwest Symposium on
Circuits and Systems, Abu Dhabi, UAE, pp.1–4, 2016.

[28] S.U. Hussain, M. Majzoobi, and F. Koushanfar, “A built-in-self-test
scheme for online evaluation of physical unclonable functions and
true random number generators,” IEEE Trans. Multi-Scale Comput.
Syst., vol.2, no.1, pp.2–16, 2016.

[29] M. Grujić, V. Rožić, B. Yang, and I. Verbauwhede, “Lightweight
prediction-based tests for on-line min-entropy estimation,” IEEE
Trans. Embed. Syst. Lett., vol.9, no.2, pp.45–48, 2017.

[30] H. Martin, G. Di Natale, and L. Entrena, “Towards a dependable true
random number generator with self-repair capabilities,” IEEE Trans.
Circ. Syst. I, vol.65, no.1, pp.247–256, 2018.

[31] L. Gantel, A. Duc, L. Steiner, F. Vannel, A. Upegui, and F. Gluck,
“A FPGA-based post-processing and validation platform for ran-
dom number generators,” 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops, New Orleans, LA,
pp.123–126, 2020.

[32] W. Killmann and W. Schindler, A proposal for: functionality classes
for random number generators, version 2.0, Federal Office for Infor-
mation Security, Bonn, Germany, 2011.

[33] National Institute of Standard Technology, Gaithersburg, MD, FIPS
PUB 140–2 Security Requirements for Cryptographic Modules,
2001.

[34] A. Rukhin, J. Sota, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A
statistical test suite for random and pseudorandom number genera-
tors for cryptographic applications, 2000.

[35] M.S. Turan, E. Barker, J. Kelsey, K. McKay, M. Baish, and M.
Boyle, “Recommendation for the entropy sources used for random
bit generation,” National Institute of Standard Technology (NIST)
Special Publication 800–90B, Gaithersburg, MD, 2018.

[36] G. Marsaglia, “Diehard battery of tests of randomness (archived).”
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/
pub/diehard/, accessed Nov. 7, 2022.

[37] N. Fujieda, “Versatile TRNG IP core for evaluation on PYNQ plat-
form.” https://github.com/nfproc/TRNG IP, accessed Nov. 7, 2022.

[38] R.G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: a random
number test suite version 3.31.1.”

Naoki Fujieda received his D.E. degree in
2013 from the Department of Computer Science
of Tokyo Institute of Technology. He worked
for Toyohashi University of Technology during
2013–2019. He is presently an associate pro-
fessor of Aichi Institute of Technology. His re-
search interests include processor architecture,
applied FPGA systems, embedded systems, and
digital systems education. He is a member of
IPSJ, IEICE, and IEEE.

Shuichi Ichikawa received his D.S. de-
gree in Information Science from the Univer-
sity of Tokyo in 1991. He has been affiliated
with Mitsubishi Electric Corporation (1991–
1994), Nagoya University (1994–1996), Toyo-
hashi University of Technology (1997–2011),
and Numazu College of Technology (2011–
2012). Since 2012, he is a professor of the
Department of Electrical and Electronic Infor-
mation Engineering of Toyohashi University of
Technology. His research interests include par-

allel processing, high-performance computing, custom computing machin-
ery, and information security. He is a member of IEEE (senior member),
ACM, IEICE (senior member), IEEJ (senior member), and IPSJ.

Ryusei Oya received his B.E. degree
in 2022 from the Department of Electrical and
Electronics Engineering of Aichi Institute of
Technology.

Hitomi Kishibe received her M.E. de-
gree in 2021 from the Department of Electri-
cal and Electronic Information Engineering of
Toyohashi University of Technology.

http://dx.doi.org/10.1109/hst.2013.6581572
http://dx.doi.org/10.1109/iscas.2015.7169072
http://dx.doi.org/10.1109/mwscas.2016.7870007
http://dx.doi.org/10.1109/tmscs.2016.2519902
http://dx.doi.org/10.1109/les.2017.2687082
http://dx.doi.org/10.1109/tcsi.2017.2711033
http://dx.doi.org/10.1109/ipdpsw50202.2020.00027
http://dx.doi.org/10.6028/nist.sp.800-22
http://dx.doi.org/10.6028/nist.sp.800-90b

