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Abstract—This paper presents two implementations of BLAKE
hash family algorithm that has been selected as one of the SHA-3
competition finalist. The first implementation is a modification
from the implementation of Beuchat et al. which significantly
reduces the required ROM size up to 36% from the original
requirement with small trade-off in additional logic circuit. The
second implementation is an extension from Half-G structure that
was designed to be flexible for different kinds of application. The
highly compact BLAKE-256 design uses 356 LE and 9776 bits of
memory when implemented in Cyclone III FPGA. Regular data-
path design requires 369 slices and 1 memory block in Virtex
5 FPGA. Both designs are fully autonomous, which means that
these designs do not require any additional memory or logic
outside its system.

Index Terms—SHA-3 competition, BLAKE, hardware imple-
mentation, FPGA

I. INTRODUCTION

Mobile communication and computing had created new

requirements for a high-speed, reliable but secure method

of delivering data. Network of high performance computing

system also requires ways to secure their information. In

another field, smart card and RFID had replaced common

method of payment that needs a system that is secure but small

and cheap for exchanging financial information. Cryptographic

hardware is utilized ranging from high speed high performance

system to low cost small system.

BLAKE has been selected as one of the finalists of SHA-3

Competition [1]. Hash function is one form of cryptographic

algorithms that are frequently utilized in digital signature and

authentication. Hash algorithm should be able to produce fixed

length output regardless of message input length. Commonly

used hash functions, MD5 and SHA-1 have been proven as

breakable. SHA-2 which has been designed to be more robust

than them is still considered secure. However, SHA-2 shared

the same structure with SHA-1, which raised some concern

about its security. Therefore NIST announced a competition

for a new hash function that will augment SHA-2 [2]. The

competition is held in three rounds. Aside from the security

criteria, these new algorithm should be implementable in

a wide range of hardware and software platforms. NIST

will evaluate hardware cost which includes computational

efficiency or algorithm speed and memory requirement which

includes gate/logic counts and memory blocks.

BLAKE is a combination of three proven cryptographic

method, they are LAKE, HAIFA, and ChaCha. BLAKE itera-

tion mode is derived from LAKE, while its internal structure is

derived from HAIFA structure, and its compression algorithm

is a modified version of ChaCha algorithm. LAKE hash func-

tion uses local wide-pipe internal structure which make local

collision impossible. Hash Iterative FrAmework (HAIFA) is an

update from Merkle-Damgard construction. HAIFA allows one

pass computation with a fixed amount of memory regardless of

the size of the input message. ChaCha compression function

proposed by Bernstein [3] is a Salsa20 stream cipher family

in which its security property has been deeply analyzed.

Hash cryptographic hardware is utilized in wide range of

application starting from low-power cost-constrained smart

card to high-speed network switch. Each of these applications

requires different kinds of hardware optimization. This study

aimed to design BLAKE hash cryptographic hardware that can

be easily modified to achieve certain throughput value based

on its application requirements with a slight modification in

its code design. A modification of a BLAKE hardware design,

that was first proposed by Beuchat et al. [4] which significantly

reduces the microcode ROM size, is also presented especially

to correspond with final round tweak. In the next section, short

introduction to BLAKE hash function algorithm is examined.

Section III shows two hardware designs of BLAKE, and in the

following section we examine their performances in FPGA.

Comparison with other hardware designs of BLAKE is also

presented.

II. BLAKE HASH FAMILY ALGORITHM

BLAKE hash algorithm is a hash functions family com-

prises of four members, BLAKE-224, BLAKE-256, BLAKE-

384, and BLAKE-512. The first two are intended for 32 bit

application while the latter two are for 64 bit application.

Each version has similar algorithm but differ in its initial

value, message padding, and constant values. After the an-

nouncement of the SHA-3 competition finalist, Aumasson et

al. [5] proposed design tweaks for BLAKE. The first tweak

is only in the naming to avoid confusion and made it easier

to recognize. The other tweaks increase round iterations in

the compression function. For 32-bit versions of BLAKE

(BLAKE-224, BLAKE-256) round iteration is increased from

10 to 14 rounds. For 64-bit versions (BLAKE-384, BLAKE-

512) round iteration is increased from 14 to 16 rounds. These
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modifications were made to increase its security margin, which

was possible because BLAKE has been recognized as a fast

algorithm.

All BLAKE family shares the same three steps algorithm.

It started with initialization process where an inner state of

4×4 matrix is computed from initial value (or previous chain

value), salt, and counter. Round process iterates this inner state

and transforms it using compression functions Gi (a, b, c, d).
Finalization step generates digest message that also used for

the next chain value.

A. BLAKE-256

A brief explanation about BLAKE hash algorithm especially

for BLAKE-256 variant will be shown in the next subsection

and modification for the other variants will follow.

1) Initialization: A 4× 4 state matrix consist of 16 words

v0-v15 is initialized with initial chain value (h0-h7), salt (s0-

s3), constant (c0-c7), and counter (t0,t1) such that different

input will generate different state matrix.









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









2) Round: After the state matrix is initialized, the compres-

sion function takes place that consist of series of 14 iteration

rounds. Each round execute eight transformation defined by

Gi functions in equation 1.

Gi (a, b, c, d) , i ∈ {0, ..., 7}, r ∈ {0, ..., 14}

a←− a+ b+
(

mσr(2i) ⊕ cσr(2i+1)

)

d←− (d⊕ a) ≫ 16

c←− c+ d

b←− (b⊕ c) ≫ 12

a←− a+ b+
(

mσr(2i+1) ⊕ cσr(2i)

)

d←− (d⊕ a) ≫ 8

c←− c+ d

b←− (b⊕ c) ≫ 7

(1)

As shown in equation 1, each Gi functions transformation

besides operating v0 through v15, it also takes message and

constant value as an input where σr denotes a permutation

value defined by predetermined permutation table.

Four Gi functions operate on column wise and the four

operate on diagonal wise. Each function G0, G1, G2, G3

operates on different column and effectively updates different

values of v. In the same manner, each diagonal function G4,

G5, G6, G7 operates on different diagonal column to calculate

and update different values of v.

3) Finalization: Finalization step computes a new chain

value h
′

=
{

h
′

0, ..., h
′

7

}

is computed by XOR-ing previous

chain value with salt and two states v as shown in equation 2.

h′

0 ←− h0 ⊕ s0 ⊕ v0 ⊕ v8

h′

1 ←− h1 ⊕ s1 ⊕ v1 ⊕ v9

h′

2 ←− h2 ⊕ s2 ⊕ v2 ⊕ v10

h′

3 ←− h3 ⊕ s3 ⊕ v3 ⊕ v11

h′

4 ←− h4 ⊕ s0 ⊕ v4 ⊕ v12

h′

5 ←− h5 ⊕ s1 ⊕ v5 ⊕ v13

h′

6 ←− h6 ⊕ s2 ⊕ v6 ⊕ v14

h′

7 ←− h7 ⊕ s3 ⊕ v7 ⊕ v15

(2)

B. Other BLAKE family members

Other variant of 32-bit version of BLAKE, BLAKE-224

share the same algorithm and constant value but it differs in its

initial chain value. The 64-bit versions of BLAKE (BLAKE-

384 and BLAKE-512) use different initial value and constant

because of their word length difference. The compression

functions of BLAKE-512 and BLAKE-384 are similar with

the 32-bit variant except that they use different values for

constant rotation factor. They also perform 16 rounds of

iteration instead of 14.

III. HARDWARE DESIGN

Currently proposed hardware designs of BLAKE did not

incorporate final round tweak. The core functionality itself

did not change but there are some possible changes in the

control sequences that will affect logic utilization and memory

bits usage. In this paper, two different designs are presented

which conform to the final specification of BLAKE. The

highly compact design attemps to reduce logic utilization

to its minimum by time-sharing most of the arithmetic and

logic computation. The second design is regular data-path

design, which implements Data Flow Graph (DFG) directly.

This design can be easily modified to meet certain application

requirement such as required operating frequency or data

throughput.

A. Highly compact design

1) Reproduction of proposed design by Beuchat et al.: This

design extends the ideas proposed in [4]. Compact design is

achieved by using minimal arithmetic and logic unit (ALU)

circuitry in a time-shared manner. In [4], compact design

of BLAKE-32 is proposed by dividing BLAKE-32 round

computation into 10 simple equations which contains only one

or two operations.

The design consists of control unit which is a simple

counter, microcode ROM to store instruction and memory

address, dual port RAM to store all data, and Arithmetic Logic

Unit (ALU) as shown in figure 1. The ALU is pipelined into

four stages and each stage only performs one specific basic

arithmetic operation. All operations are governed by four fields

in the microcode. The first field is write-enable signal for write

back process to the memory. Second and third are addresses

for port B and port A of the dual port memory respectively.

The last field is control signal to control ALU behavior.
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Fig. 1. Reproduction from BLAKE-32 design and its timeline

Each G-function is separated into 10 basic arithmetic op-

erations, there are 8 G-functions in each round, and there are

10 rounds for BLAKE-32. Therefore, to finish all BLAKE-32

round function, it requires 800 clock cycles. Additional cycles

are required for initialization (16 clock cycles), finalization

(24 clock cycles), and data loading to the pipeline (4 clock

cycles). Required clock cycles are 844 cycles in total.

This design excels in its low logic area requirement but it

requires considerably large ROM to store all of its microcode.

It requires 20 × 844 (16880) bits of ROM. These ROM

would become 23280 bits for BLAKE based on latest design

specification because BLAKE designer had decided to increase

the number of round iteration.

2) New microcode design for fully autonomous BLAKE-

256: In order to reduce these ROM requirements, an instruc-

tion compaction technique is utilized. Close examination in

each round reveals that equations in each BLAKE round are

similar. The difference lies in the permutation variables defined

by permutation constants for determining message (m) and

constant (c) address. These permutation variables in each G-

function in each round are controlled by predefined permuta-

tion table presented in BLAKE specification. Moreover, these

permutation variables are only called in 2 equations from 10,

and they also appeared in regular time interval.

Based on these two observations, by separating microcode

for calling permutation table into two different ROMs, mi-

crocode ROM can be executed iteratively. Each round will

execute exactly the same code which can drastically reduce

microcode ROM size as shown in figure 2. The permutation

ROM size itself still depends on the number of iteration but

it only holds the address for constant and message which are

4 bit each, so it can radically reduce the number of ROM bits

required.

Microcode ROM is split into two ROMs. The first ROM

(microcode ROM) holds the initialization, iterative control

sequences, and finalization instructions, while the second

ROM (permutation ROM) holds the non-iterative sequences

instruction which governed by permutation value in current

round. There are 16 calls of permutation values for message

(m) and counter (c) in each round and they are divided into 4

group calls. Each permutation value is a simple address pointer

for message and constant. Consequently it only needs 8 bits

word length to store address for m and c in a single call (4

bits each).
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Fig. 2. Microcode iteration

A counter retains the microcode ROM address. Additional

counter is required to generate both permutation ROM ad-

dresses and keep track of iteration rounds. A decoder is used

to determine whether the instruction should come from mi-

crocode ROM or permutation round according to the counter

value and current state. This simple modification reduce a

great deal of ROM bits in exchange for a slight increase of

logic area for counters and a decoder. The functionality of the

design does not change but maximum operational frequency is

expected to be slightly lower due to additional decoder logic.
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Fig. 3. Modified compact BLAKE-256 design and its timeline

This design shown in figure 3, requires 14 × 8 × 10
(1120) clock cycles to finish the round iterations; it also

requires additional 20 cycles for initialization and 22 cycles

for finalization and write-back of digest messages to memory.

Total required clock cycles are 1162 cycles, measured from

the beginning of initialization stage until the digest message

becomes ready to be read.



B. Regular data-path design

While highly compact design excels in minimal usage of

logic circuit, it commonly occupies fairly large amount of

memory bits and or shows rather low throughput because ALU

is time-shared. Regular data-path design made some tradeoff

between logic area and throughput while it can be easily be

optimized for speed or throughput as required because of its

regular structure.

Equation 3 shows that each G-function can be divided into

eight arithmetic operations. A close examination also reveals

that each G variables (a, b, c, d) is updated twice. Therefore,

by introducing another variable g, the arithmetic operations

can be collapsed into just four. Variable g defines whether the

current operation happened in the first half of G-function, or

in the second half. This approach resulted in similar design to

the half-G design in [5].

Gi (a, b, c, d) , i ∈ {0, ..., 7}, r ∈ {0, ..., 14}, g ∈ {0, 1}

a←− a+ b+
(

mσr(2i+g) ⊕ cσr(2i+1−g)

)

d←− (d⊕ a) ≫ 8 ≫ 8 (1− g)

c←− c+ d

b←− (b⊕ c) ≫ 7 ≫ 5(1− g)

(3)

Equation 3 can be arranged into Data Flow Graph (DFG)

fashion. The DFG shows that the longest path would be from

m→ b
′

or c→ b
′

or a→ b
′

. We can safely assume that adder

circuit generates longer delay compared to XOR circuitry.

Therefore, the highest path delay in this circuit would be from

a → b
′

that goes through three adders, two XOR, and two

constant shifters. We can also omit the constant shifter in the

analysis because it can be implemented as re-wiring that do

not use any logic circuit at all.

Based on this analysis, a direct implementation of a BLAKE

ALU can be generated. The ALU has six inputs and four

outputs. The circuit only compute one half of G-function, so

it requires another cycle to compute complete G-function. A

multiplexer is inserted into each input of a, b, c, and d, to

choose whether the input data should come from memory or

from its previous computation.
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Fig. 4. BLAKE-256 ALU

The same circuitry can also be utilized to computes state

initialization, and finalization step. Both steps are done before

and after rounds computation respectively, so it is possible to

time share the logic. For initialization step, a single XOR block

is needed. The best possible candidates would be using XOR

block that computes m and c. For the finalization step, all XOR

circuits are utilized sumultaneously. Additional multiplexers

in the input and in between XOR logic are required to switch

the ALU functionality between each step. Complete design of

ALU is shown in figure 4.

The ALU receives its inputs from 6 different single port

RAMs. Four 32 × 4 RAMs are used to store v data, while

the other two is used to store messages (32 × 16) and

constants (32 × 16). It also requires two small RAMs to

store initial chain value (h), counter (t) and salt (s) with size

32× 8 each. Constant and memory address are controlled by

PAROM value. State machine controller, control and record

current step, round, and G-function state. Complete system of

BLAKE-256 is shown in figure 5.
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Fig. 5. BLAKE-256 design

IV. FPGA IMPLEMENTATION AND COMPARISONS

FPGA implementation is attempted to evaluate hardware

cost which becomes one of the deciding criteria for SHA-

3 competition. Hardware cost includes computational speed,

logic usage, and memory usage. Computational speed is trans-

lated into throughput that is calculated by dividing working

frequency with total required clock cycles and multiplied with

message length [6]. Logic usage in FPGA is measured differ-

ently among different FPGA vendors. In Altera FPGA, logic

usage is measured in Logic Element (LE) while for Xilinx

FPGA logic usage is measured in slices. Each previous design

of BLAKE use different kinds of FPGA which makes direct

comparison is difficult [7]–[10] as shown in [11]. Therefore,

the BLAKE designs are synthesized in two kinds of FPGA

platform for fair comparison with the most similar design.

The original design has been synthesized on numerous

FPGA platforms [4]. Altera Cyclone III device is chosen for

comparison because it has limited resources which are ideal for

a compact hardware design. Aumasson et al. also synthesized

their design on several FPGA targets [5]. Xilinx Virtex-5

is chosen as the second platform because it has the largest

hardware resources in terms of logic and memory blocks

which are ultimately necessary for higher freedom of design

optimization.



A. Highly compact design

There are three 32-bit BLAKE designs that were synthe-

sized with Cyclone III FPGA (EP3C5F256C6) as its target.

The first BLAKE-32 design is a direct reproduction from the

original design (BLAKE-32 A). This design was examined as

a reference for comparison purpose. The second BLAKE-32

design is the design that was being optimized in microcode

ROM area (BLAKE-32 B). The third design is BLAKE-256

which compatible to the latest BLAKE design specification.

TABLE I
COMPACT DESIGN SYNTHESIS RESULT

Design
Area
(LE)

Mem.
(bit)

Freq.
(MHz)

Thr.
(Mbps)

BLAKE-32 [4] 285 - 192 116

BLAKE-32 A 260 24576 214 130

BLAKE-32 B 356 8944 214 130

BLAKE-256 356 9776 214 94

BLAKE-64 [4] 542 - 140 123

BLAKE-64 A 492 32192 205 180

BLAKE-64 B 619 13872 211 186

BLAKE-512 620 14288 190 147

From the synthesis result in table I, it is evident that the

required memory bits for the modified versions are reduced

considerably to only 36% and 43% from the original require-

ment of BLAKE-32 and BLAKE-64 respectively, while addi-

tional logic elements are required as a trade-off. The BLAKE-

256 design adds 4 additional rounds which are translated into

additional clock cycles. This tweak, does not add additional

logic, but it reduce the design throughput performance. It also

requires small increase in memory requirement to store the

constant and message address in round 11 through 14, while

the other microcodes are shared with the previous rounds. The

BLAKE-512 design also do not requires an increase in logic

usage. A 1.5% increase in memory bit usage is required to

store constant and message for the additional rounds.

B. Regular data-path design

Regular data-path design approach is generally much closer

to BLAKE reference design than to highly compact design

hardware. Thus, comparison with BLAKE reference design is

much more proportional. The design is synthesized on Virtex

5 FPGA. Table II shows that the regular data-path design

requires similar slice area compared to BLAKE-256[1G] de-

sign but it has higher optimal frequency. It also has relatively

low throughput compared to reference design, because it only

implements half of the compression functions. The purpose

of this design is to create a minimal and regular hardware

design that can be easily further optimized. This regular style

of design have the potential for customization to increase its

performance.

V. CONCLUSION

In this paper, two designs of BLAKE hash function hard-

ware have been presented. Each design is targeted to different

TABLE II
REGULAR DATA-PATH DESIGN SYNTHESIS RESULT

Design
Area
(slice)

Mem.
(block)

Freq.
(MHz)

Thr.
(Mbps)

BLAKE-256[8G] [5] 1694 - 67 3103

BLAKE-256[4G] [5] 1217 - 100 2438

BLAKE-256[1G] [5] 390 - 91 575

BLAKE-32 [12] 1660 0 115 487

BLAKE-256 Reg 369 1 145 266

application constraint. For a cost and area constrained appli-

cation, we proposed a compact and small memory BLAKE-

256 design modified from [4]. This design made a trade-

off by sacrificing throughput to achieve small logic and

memory footprint. For a custom high performance system, we

also proposed regular data-path design. This design can be

further optimized based on target application by using simple

technique like pipelining and parallel processing to achieve

higher throughput.
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