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Abstract

Although heterogeneous clusters are flexible and cost-effective, they entail intrin-
sic difficulties in optimization. Whereas it is simple to invoke multiple processes
on fast processing elements (PEs) to alleviate load imbalance, the optimal process
allocation is not obvious. Communication time is another problem. Though it is
sometimes better to exclude slow PEs to avoid performance degradation, it is gen-
erally difficult to find the optimal PE configuration. In this study, the execution
time is first modeled from the measurement results of various configurations. The
derived models are then used to estimate the optimal PE configuration and process
allocation. We implemented various models for HPL (High Performance Linpack
benchmark) on a heterogeneous cluster, and estimated the optimal configurations
for various problem sizes. In the case of a heterogeneous cluster of Athlon and
Pentium-II, the execution time of the estimated optimal configuration was 0%–7.4%
longer than that of the actual optimal configuration. In a heterogeneous cluster of 3
kinds of processors that includes dual-processors, the excess time was 13.6%–31.5%.
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1 Introduction

It is reasonable to enhance the performance of an existing PC cluster by
adding the latest high-performance processors. The resulting cluster becomes
heterogeneous, consisting of a wide range of processing elements (PEs) from
fast to slow. However, heterogeneous clusters inherently entail difficulties in
optimization and suffer from load imbalance.

Although it is simple to invoke multiple processes on fast PEs to alleviate
load imbalance, this approach (multiprocessing) has some drawbacks. The first
problem is the overhead to execute multiple processes on the same processor.
Another problem is that the ratio of PE performance is not always an integer,
while the number of processes invariably is. Thus, the best process allocation
among PEs is far from obvious.

Communication time is also very important. It is not always preferable to
use all available PEs, since superfluous communications can prolong the total
execution time. In particular, a slow PE can create a performance bottleneck
in computation and communication. The total performance can be improved
by excluding slow PEs, and instead using the best subset of PEs. However, it
is generally difficult to find the best subset of available PEs, i.e., the best PE
configuration for a heterogeneous cluster.

Many applications for parallel computers or homogeneous clusters are written
to distribute workloads equally among PEs. Although it is desirable to rewrite
the application for heterogeneous clusters, it requires much time and effort
to adapt it to a heterogeneous environment. Moreover, the effort must be
repeated for each application.

The purpose of this study is to execute conventional parallel applications effi-
ciently on heterogeneous clusters without rewriting them. Our study adopts a
multiprocessing approach, providing an effective way to estimate the best PE
configuration and process allocation based on an execution-time model of the
application. Our method does not aim to extract the maximum performance
from a heterogeneous cluster, but rather to offer an easy and simple way to
accelerate a wide range of conventional parallel applications in heterogeneous
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clusters. Although we examine HPL (High Performance Linpack benchmark)
[1] as a sample application in this study, our approach is not limited to HPL
alone but is expected to be widely applicable to many other applications.

Section 2 introduces some related studies, and then briefly summarizes the
background of this study. In Section 3, the execution time is modeled from
the measurement results of various configurations. The derived models are
used to estimate the optimal PE configuration and process allocation. The
evaluation results are found in Section 4. Section 5 concludes the study.

2 Background and related works

Though a block cyclic distribution is very popular in balancing the load of
matrix-matrix multiplication and LU decomposition, such a distribution in
its original form is not suited to a heterogeneous environment. Therefore,
many researchers have studied alternative load-balancing schemes. For exam-
ple, Kalinov and Lastovetsky [2] presented a “heterogeneous block cyclic dis-
tribution” for the Cholesky factorization of square dense matrices. Beaumont
et al. [3] reported a “2D heterogeneous grid allocation” for the heterogeneous
cluster ScaLAPACK [4], while Sasou et al. [5] modified the HPL source code
for heterogeneous clusters to dispatch multiple panels to fast PEs in LU de-
composition.

In all the above studies, the original source codes were rewritten for heteroge-
neous computing environments, whereas the present study aims to find a way
to execute the existing applications as they exist in heterogeneous clusters. In
the abovementioned studies, computational workloads are distributed accord-
ing to PE performance, but communication is not given sufficient attention.
Those studies use all available PEs but lack a viewpoint from which to se-
lect the best set of processors among them. Contrary, our method considers
communication time quantitatively in the optimization, and estimates the PE
configuration most likely to yield the optimal execution time.

Sasou et al. [5] stated that the performance of the multiprocessing approach is
rather poor compared to their HPL implementation specialized for heteroge-
neous clusters. However, their conclusion is not yet definitive. They evaluated
performance by fixing the configuration of a heterogeneous cluster; i.e., using
a predetermined set of PEs with predetermined numbers of processes on each
PE. The performance of multiprocessing might be improved by selecting the
best configuration of PEs and processes.

Figure 1 illustrates the performance of HPL on a single Athlon 1.33 GHz
processor. The X-axis is the size N of HPL, and the Y-axis is the total perfor-
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Fig. 1. Performance overhead of multiprocessing on an Athlon processor.
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Fig. 2. HPL performance of a heterogeneous cluster of various configurations; load
imbalance.

mance reported by HPL. In the figure, “nP/CPU” denotes that n processes
were simultaneously executed on that processor. Although the performance
decreases as n increases, the loss is not too great for practical applications.

The performance of HPL is defined by the following calculation. The arith-
metic operations required for HPL of size N is 2N3/3 + 3N2/2 flops, where
2N3/3−N2/2 is for LU factorization and 2N2 is to solve the main problem.
HPL measures the maximum walltime of all PEs involved, and the overall
performance is calculated by dividing 2N3/3 + 3N2/2 flops by the measured
maximum walltime. Therefore, HPL performance is not the sum of the perfor-
mance of each PEs, but it represents the overall performance of the system.

Figure 2 and 3 summarize the HPL performances of various subsets of a hetero-
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Fig. 3. HPL performance of a heterogeneous cluster of various configurations; mul-
tiprocessing.

geneous cluster, which consists of an Athlon 1.33 GHz node, four Pentium-II
400 MHz dual-processor nodes, and a 1000base-SX network. This cluster is a
subset of the heterogeneous cluster shown in Table 1.

In Figure 2, “Athlon x 1” designates the performance of a single Athlon pro-
cessor. Though the peak performance of an Athlon is about 1.2 Gflops, its
performance degrades when N ≥ 10000 for the shortage of main memory.
“P2 x 5” denotes the performance of five Pentium-II processors, which is al-
most the same as that for a single Athlon. As the total memory capacity of
five Pentium-II nodes is much larger than that of an Athlon, the performance
does not degrade even when N = 10000 in this configuration. “Ath x 1 +
P2 x 4” designates the performance of a heterogeneous configuration, which
consists of an Athlon and four Pentium-II processors. The performance of this
configuration is practically the same as that of “P2 x 5”. Since an Athlon 1.33
GHz is about 5 times faster than a Pentium-II 400 MHz, the peak performance
of “Ath x 1 + P2 x 4” should be nearly twice that of “P2 x 5”. However, the
load imbalance degrades the performance of this heterogeneous configuration.
Since the computational workload of HPL is equally distributed, the Athlon
must wait for synchronization after finishing its computation. To alleviate this
load imbalance, we attempt to invoke multiple processes on fast PEs.

Figure 3 shows that the HPL performance of the heterogeneous configuration
(Ath x 1 + P2 x 4) can be improved by adopting a multiprocessing approach.
In this figure, “n = 2” denotes that two processes are simultaneously executed
on an Athlon, while each Pentium-II invokes a single process (6 processes in
total). “Athlon x 1” designates the performance of a single Athlon, which is
shown for contrast. Since the workload of HPL is equally distributed to each
process, an Athlon can undertake more computational workloads by invoking
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more processes. If the appropriate number of processes are invoked on an
Athlon, the load imbalance could be resolved and no wait would occur for
synchronization.

From Figure 3, it is readily seen that the load imbalance can be alleviated
by multiprocessing. In the case of N = 10000, 77% of the peak performance
(2.2 Gflops) can be utilized by executing four processes on an Athlon (n =
4). On the other hand, when N < 5000, “n = 4” demonstrates a lower per-
formance than “n = 1”, owing to the multiprocessing overhead. For superior
performance, the choice should be “Athlon x 1” when N ≤ 3000, “n = 2”
when 3000 < N ≤ 5000, “n = 3” when 5000 < N ≤ 8000, and “n = 4” when
8000 < N ≤ 10000, judging from Figure 3.

It is no easy task to find the best way of execution in general cases. The
next section discusses how to optimize the multiprocessing execution in a
heterogeneous cluster.

3 Construction of estimation model

3.1 Assumptions

To optimize the multiprocessing approach for heterogeneous clusters, it is
necessary (1) to select the optimal subset of PEs and (2) to determine the
optimal number of processes on each PE. This task is modeled as a combina-
torial optimization problem to minimize the total execution time, where one
must construct an objective function that estimates the total execution time
from the given PE set and the given number of processes.

In this section, we construct the estimation model based on some small HPL
trials. As the orders of computation and communication are derived from the
algorithm, we can assume the approximation formula of the total execution
time. We then extract constant factors from the measurement results by the
least-squares method.

This kind of modeling technique is very common in various applications. For
example, in MOS transistor modeling for circuit simulations [6], many fit-
ting parameters are introduced from the measurement results into analytical
models based on device physics. Although such a semi-empirical model is not
always elegant, it may contain several factors that were unknown or neglected
in the modeling process. In our case, the semi-empirical model may include
factors such as the miscellaneous overhead caused by cache misses, or commu-
nication buffer management.
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We make the following assumptions here to simplify our models and evalua-
tions:

• Ignore the overlap of computation and communication, and assume the total
execution time to be the sum of the computation time and the communica-
tion time.

• Invoke the same number of processes on equivalent PEs (PEs of the same
specification).

• Ignore the network topology, and assume that the network is homogeneous.
• Assume that the communication time is independent of the receiver. This

assumption liberates us from having to measure the communication time of
every possible combination of sender/receiver.

Such simplification may lead to a slight discrepancy with reality, but such a
discrepancy proved to be modest in our study. The evaluation results will be
found in Section 4. If the discrepancy proved to be unacceptably large, we
would have to rebuild our models based on other assumptions.

3.2 N-T model

Let N be the size of HPL. Gi is a group of PEs comprised of equivalent PEs
in a heterogeneous cluster. Pi is the number of PEs actually used for the job
in Gi (0 ≤ Pi ≤ |Gi|). Mi is the number of processes on each PE in Gi, if
Pi 6= 0; Mi is zero, if Pi = 0. P is the total number of processes in the cluster;
i.e., P =

∑
i PiMi. Our goal is to build models that estimate the execution

time Ti of Gi from N , P , and Mi. The total execution time T is estimated by
T = maxi Ti.

Ti consists of the computation time Tai and the communication time Tci.
We assume Ti = Tai + Tci here, as stated in Section 3.1. Clearly, Ti depends
on the process grid. Although, in this study, we examine only the case of a
1-by-P process grid (one-dimensional block cyclic distribution), our scheme is
universally applicable to any other process grid.

To estimate Tai and Tci, we have to examine the execution time item by
item. Figure 4 illustrates the items included in the total execution time of
HPL. The term rfact represents the time for recursive panel factorization,
which includes pfact (panel factorization) and mxswp (max row swap com-
munication). The term update denotes the time required for the update phase,
which includes laswp (row interchange communication). The term uptrsv in-
dicates the time required for backward substitution, and bcast is broadcast
communication. All these items (except for bcast) can be measured by defin-
ing HPL DETAILED TIMING in compiling HPL. To measure bcast, we had
to add some lines to the original source code.
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Fig. 4. Detailed timing measurement.

Finally, the computation time Tai and the communication time Tci are esti-
mated by the following equations:

Tai = (rfact−mxswp) + (update− laswp) + uptrsv (1)

Tci = mxswp + laswp + bcast (2)

The order of computation is determined from the algorithm, and is summa-
rized by the following equations [5]:

rfact =
3

2
·N2 + O(N) (3)

update =
2N3

3P
+

P + 1

P
·O(N2) + O(N) (4)

uptrsv =
1

P
·O(N2) (5)

In the same way, the order of communication is estimated and summarized as
follows.

mxswp = O(1) (6)

laswp =
1

P
·O(N2) (7)

bcast = (P − 1) ·O(N2) (8)

Thus, Tai, Tci, and Ti are estimated by the following equations.

Tai =
1

P
·O(N3) + O(N2) (9)
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Tci = P ·O(N2) +
1

P
·O(N2) + O(N2) (10)

Ti =
1

P
·O(N3) + P ·O(N2) + O(N2) (11)

As seen in above equations, the order of Tai is the same as that of update.
As a matter of fact, update is the dominant factor of Tai; According to the
actual measurement results, update is approximately 100 times greater than
uptrsv and rfact when N = 9600.

In our previous study [7], we built the Tai and Tci models separately from
detailed measurement results. However, the derived models showed relatively
major errors in estimating execution time. We found that deviations remain
in the Tci model, and that simple linear transformations can compensate for
them [7].

Such estimation errors may be caused by the simplifications stated in Sec-
tion 3.1. The models may be improved by (1) building more elaborate models
with more parameters, (2) using more models according to individual cases,
and (3) specializing in the behavior of a specific application. However, we
do not favor any of these approaches. We already have too many parameters
to handle in heterogeneous clusters, and do not want any more complicated
models. We also prefer general models rather than application-specific models.

In this study, we adopt a simple model that approximates T as a whole. Since
T is very easy to measure, this scheme would be generally applicable to any
applications. This simply means that it is applicable to any applications, but
does not necessarily mean that the derived models would show a good fit
to reality. However, we concentrate here on examining the feasibility of this
simple scheme, while leaving the improvement and enhancement of models for
future studies.

From the equation (11), the following equation is derived to approximate Ti

for a given set of P and Mi.

Ti(N)|P,Mi
= k0N

3 + k1N
2 + k2N + k3 (12)

The constant factors k0–k3 are determined from the measurement results by
the least-squares method. This model is designated as N-T model in the follow-
ing discussions. As this equation is a linear function of k0–k3, the coefficients
k0–k3 can be extracted by using the gsl multifit linear() function of GSL
(GNU Scientific Library) [8]. In order to extract four coefficients k0–k3, we
have to measure Ti(N) of (at least) four different sizes (Ns) for each configu-
ration.

9

PREPRIN
T



3.3 P-T model

Each N-T model was constructed to be specific to the configuration (P and
Mi). Though N-T models can interpolate or extrapolate T from the size N ,
they are incapable of estimating T for other configurations. In other words,
we have to build a separate N-T model for each possible configuration (Fig. 5
(left)).

Since it is not practical to manage many N-T models for every combination of
parameters, we integrate N-T models of the same Mi into a new model. Since
this model includes P as a variable, it is called a P-T model . P-T models are
represented by the following equation, considering the equation (11).

Ti(N,P )|Mi
= k4P · Ti(N)|P,Mi

+
k5

P
· Ti(N)|P,Mi

+ k6 (13)

Here, the constant factors k4–k6 have to be extracted from the correspond-
ing N-T models by the least-squares method. As these equations are lin-
ear functions of k4–k6, their coefficients can also be extracted by using the
gsl multifit linear() function [8]. To extract these coefficients, we have to
measure (at least) three different P s for each P-T model. With P-T models,
we can interpolate or extrapolate T from P , thus substantially reducing the
model construction time.

In this study, we decided to construct models from the measurement results
of each Gi; i.e., a homogeneous sub-cluster is used to construct a model.
For example, we extract the model parameters for Pentium-II by using eight
Pentium-II processors in our heterogeneous cluster, leaving Pentium-III and
Athlon unused. This greatly simplifies the model construction, since it dras-
tically reduces the number of combinations for measurements. Though there
are many other relevant possibilities in this regard, we leave them for future
studies.

It might be also possible to extract constant factors of the equation (11)
directly from the measurement results. Such possibility is also left for future
studies.

3.4 Binning

Both N-T and P-T models are selectively used according to the circumstances.
Figure 5 (right) summarizes the selection of models. The “X” in Figure 5
denotes that there are no such cases (keep in mind that P =

∑
i PiMi ≥ ∀Mi

holds).
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Fig. 5. N-T models (left) and binning (right).

When HPL is executed on a single PE (i.e., P = ∃Mi), no inter-PE com-
munication emerges. This case is distinct from the execution with multiple
processors (i.e., P > ∀Mi). It is illogical and imprecise to treat these two
cases equally. Thus, the N-T model is used for P = Mi, while the P-T model
is used for P > Mi. Such selective use of models is called “binning” in tran-
sistor modeling [6], and is used to switch models where the dominant physical
process is different.

We can also select models according to the data size. As the memory hierarchy
is closely related to performance, Ti can show disjunct behavior depending on
the allocated data size. For example, it is well known that performance is
significantly degraded when cache-misses frequently occur. Another example
is shown in Figure 2, where the performance of a single Athlon is severely
degraded by the shortage of main memory (at N = 10000). Since the memory
requirement for each node can be predetermined from N and P , it is possible
to select an adequate estimation equation according to the required memory
size. The model of Ti is not necessarily continuous nor differentiable, but it
could be a piecewise function.

3.5 Model composition

N-T and P-T models have to be built for each group Gi. On the other hand, it
is both difficult and impractical to build models for every Gi, of which there
are so many. In such cases, it is far more practical to build some of the models
from those that are actually derived from measurement results. This technique
is called model composition in this study.

As stated in Section 3.3, at least three sets of P measurements must be taken
to build P-T models. If a homogeneous sub-cluster is used for parameter ex-
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Table 1
HPL execution environment.

Node 1 AMD Athlon 1.33 GHz, Main memory 768 MB

Nodes 2–3 Intel Pentium-III 866 MHz (dual-processor), Main memory 768 MB

Nodes 4–7 Intel Pentium-II 400 MHz (dual-processor), Main memory 768 MB

Network 1000base-SX (GA-620), 100base-TX (Intel Pro100+)

OS RedHat Linux7.0J (kernel 2.4.2)

Compiler gcc 2.96, -DHPL DETAILED TIMING -fomit-frame-pointer -O3 -funroll-loops -W -Wall

Libraries MPICH–1.2.5, ATLAS 3.2.1

traction, we need three or more processors of the same kind. If there are not
enough processors in a group, it is impossible to build P-T models from mea-
surements for that group. Such a situation often occurs in a heterogeneous
cluster.

In this study, since we only have one Athlon processor in our heterogeneous
cluster, we cannot extract the P-T model parameters for Athlon. Therefore,
in the evaluation of Section 4, the P-T models of Athlon are composed from
the P-T models of Pentium-II constructed from measurements.

4 Evaluation

In this section, the estimation models are built and evaluated for a heteroge-
neous cluster. The specifications of the evaluation platform are listed in Ta-
ble 1. As each Pentium-II node includes two processors, a total of 8 Pentium-II
processors are available in 4 nodes (Node 4–Node 7). Likewise, 4 Pentium-III
processors are available in Node 2 and Node 3. All nodes have both 1000base-
SX and 100base-TX interfaces, but only the 100base-TX is used in the follow-
ing measurements to clearly demonstrate the effect of communication time.

4.1 Heterogeneous cluster of Athlon and Pentium-II

Here we examine the fundamental properties of our models using two groups of
PEs (Athlon and Pentium-II). In the following discussion, P1 and P2 designate
the respective number of Athlon and Pentium-II processors used for the HPL.
M1 and M2 represent the number of processes invoked on each Athlon and
Pentium-II, respectively.
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Table 2
Errors in estimated best configurations vs. measured best configurations; using only
N-T models.

Size Estimated best configuration Actual best configuration Error

N P1, M1, P2, M2 τ τ̂ P1, M1, P2, M2 T̂ (τ − T̂ )/T̂ (τ̂ − T̂ )/T̂

1600 1, 1, 0, 0 3.40 3.48 1, 1, 0, 0 3.48 -0.022 0.000

3200 1, 1, 0, 0 26.13 25.93 1, 1, 0, 0 25.93 0.008 0.000

4800 1, 2, 8, 1 71.15 71.29 1, 1, 8, 1 71.27 -0.002 0.000

6400 1, 4, 8, 1 138.70 138.72 1, 4, 8, 1 138.72 -0.000 0.000

8000 1, 4, 8, 1 231.90 249.06 1, 4, 8, 1 249.06 -0.069 0.000

9600 1, 5, 7, 1 356.38 408.91 1, 4, 8, 1 386.55 -0.078 0.058

4.1.1 Evaluation of N-T models

First of all, we have to examine the accuracy of N-T models. Since our models
are designed based on the assumptions in Section 3.1, they must be verified
by measurements.

Each N-T model was constructed from the measurements of 9 sizes (N =
400, 600, 800, 1200, 1600, 2400, 3200, 4800, and 6400). Configurations were as
follows; 0 ≤ P1 ≤ 1, 1 ≤ M1 ≤ 6, 0 ≤ P2 ≤ 8, and M2 = 1. Since an Athlon
1.33 GHz is about 4 times faster than a Pentium-II 400 MHz, M1 was set to
be 1 ≤ M1 ≤ 6, while M2 was fixed to 1. There are 54 (6× 9) configurations
for P1 = 1, and 8 for P1 = 0, for a total of 62 configurations.

The total measurement time was 41043.7 seconds (about 11 hours) for 9 sizes
of 62 configurations. We extracted parameters from these measurements and
constructed N-T models for all 62 configurations. This step takes no more than
a millisecond on an AthlonXP 2600+ processor. We also measured the actual
execution time of 62 possible configurations for various Ns to determine the
best configuration.

The derived N-T models were then applied to estimate the execution time of 62
configurations to determine the optimal configuration for N = 1600, 3200, 4800,
6400, 8000, and 9600. The estimation and measurement results are summarized
in Table 2, where τ is the estimated execution time of the estimated optimal
configuration, while τ̂ is its actual execution time. T̂ is the execution time
of the actual optimal configuration. As readily seen, optimal or sub-optimal
configurations were determined using our N-T models. The estimation errors
of execution time were less than 8%, and the excess time of the estimated
optimal configurations was less than 6%.

Figure 6 and 7 display the correlation between the estimations and the mea-
surements of N-T models for various configurations. If the models are accu-
rate, all points should appear on the diagonal (dotted) line. Figure 6 shows the
correlations of the four sizes (N = 1600, 3200, 4800, 6400) used for model con-

13

PREPRIN
T



   0

 250

 500

 750

1000

   0  250  500  750 1000

t: 
M

ea
su

re
m

en
t T

im
e 

[s
ec

.]

T: Estimation Time [sec.]

 

t=T
N=1600
N=3200
N=4800
N=6400

Fig. 6. Correlation between estimations and measurements of N-T models for
N = 1600, 3200, 4800, 6400.
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struction, and Figure 7 shows the correlations of larger sizes (N = 8000, 9600)
extrapolated from the model. As readily seen, our N-T models are sufficiently
accurate for both cases.

4.1.2 Evaluation of P-T models with binning

Now, since our N-T models are regarded as reliable, we proceed to the evalu-
ation of P-T models. As shown in Figure 5 (right), N-T models are still used
with P-T models. Models were constructed for each Gi as stated in Section 3.5,
and the measurements for model construction were made for every combina-
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Table 3
Cluster configuration parameters for Athlon and Pentium-II.

Size Athlon Pentium-II Number of

N P1 M1 P2 M2 configurations

Model Construction 400, ..., 6400 1 1, ..., 6 1, ..., 8 1, ..., 6 54

Model Evaluation 400, ..., 9600 0, 1 1, ..., 6 0, ..., 8 1 62

Table 4
HPL execution time for measurements of Athlon and Pentium-II.

Size N Athlon [sec.] Pentium-II [sec.]

400 3.9 96.7

600 7.4 130.1

800 10.8 178.8

1200 20.5 305.2

1600 37.4 508.5

2400 97.5 1117.3

3200 197.2 2042.2

4800 566.0 5360.0

6400 1239.5 10950.3

Total 2180.2 20689.1

tion of parameters in the “Model Construction” of Table 3. The total number
of combination is 6 configurations of Athlon and 48 of Pentium-II for 9 sizes;
i.e., (6 + 48) × 9 = 486 sets. Table 4 summarizes the HPL execution time
for measurements item by item. The total time for measurements was 22869
seconds (about 6 hours). The models constructed here are designated as N9
models in the following discussion.

We constructed the models for 54 configurations using the results of these
measurements. This step takes as little as 0.69 millisecond on an AthlonXP
2600+ machine with Windows XP. The P-T models of Athlon were composed
from the P-T models of Pentium-II, since it is impossible to extract the pa-
rameters from a single Athlon (Section 3.5). In the present study, we simply
scaled Pentium-II P-T models by a constant factor of 0.307 to derive Athlon
P-T models. This factor was determined by comparing the Athlon N-T model
of P1 = M1 = 1 with the Pentium-II N-T model of P2 = M2 = 1.

With N9 models, we estimated the execution time of 62 possible configura-
tions shown in the “Model Evaluation” in Table 3 to determine the optimal
configuration for N = 1600, ..., 9600. This step takes only 35 milliseconds on
an AthlonXP 2600+ processor. We also measured the actual execution time
of these 62 possible configurations to determine the actual best configuration.

The evaluation results of N9 models are summarized in Table 5. It is readily
seen that optimal or sub-optimal configurations were found with N9 models.
Though the error is relatively large for N = 1600, the execution time of this
case is short, with an excess of only 1.46 seconds. In other cases, the excess
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Table 5
Errors in estimated best configurations vs. measured best configurations (N9 mod-
els).

Size Estimated best configuration Actual best configuration Error

N P1, M1, P2, M2 τ τ̂ P1, M1, P2, M2 T̂ (τ − T̂ )/T̂ (τ̂ − T̂ )/T̂

1600 1, 2, 0, 0 0.48 4.28 1, 1, 0, 0 2.82 -0.828 0.518

3200 1, 1, 0, 0 20.04 20.42 1, 1, 0, 0 20.42 -0.018 0.000

4800 1, 4, 8, 1 57.67 68.73 1, 1, 8, 1 64.00 -0.099 0.074

6400 1, 4, 8, 1 113.19 128.04 1, 2, 8, 1 125.24 -0.096 0.022

8000 1, 4, 8, 1 195.33 226.25 1, 3, 8, 1 222.86 -0.124 0.015

9600 1, 4, 8, 1 309.25 340.86 1, 4, 8, 1 340.86 -0.093 0.000
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Fig. 8. Correlation between estimations and measurements of N9 models
(N = 6400).

time of the estimated optimal configuration was less than 7.4%, while the error
in estimated optimal execution time was less than 12.4%.

Figure 8 displays the correlation between the estimations and measurements
for N = 6400. Although the error in the estimated optimal execution time
was 9.6% in this case, a positive correlation is evident. We conclude that N9
models are accurate enough to give satisfactory approximations for practical
use.

4.1.3 Reduction of measurement time

As stated in Sections 3.2 and 3.3, we have to measure at least four Ns and
three P s to extract parameters for the N-T and P-T models. N9 models in
Section 4.1.2 were constructed using measurements of nine Ns and eight P2s,
which are more than necessary. Although the models are expected to be ren-
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Table 6
Errors in estimated best configurations vs. measured best configurations (N5 mod-
els).

Size Estimated best configuration Actual best configuration Error

N P1, M1, P2, M2 τ τ̂ P1, M1, P2, M2 T̂ (τ − T̂ )/T̂ (τ̂ − T̂ )/T̂

1600 1, 1, 0, 0 2.82 2.82 1, 1, 0, 0 2.82 -0.001 0.000

3200 1, 1, 0, 0 20.81 20.42 1, 1, 0, 0 20.42 0.019 0.000

4800 1, 4, 8, 1 58.89 68.73 1, 1, 8, 1 64.00 -0.080 0.074

6400 1, 4, 8, 1 113.29 128.04 1, 2, 8, 1 125.24 -0.095 0.022

8000 1, 4, 8, 1 190.43 226.25 1, 3, 8, 1 222.86 -0.146 0.015

9600 1, 4, 8, 1 293.52 340.86 1, 4, 8, 1 340.86 -0.139 0.000

dered more accurate by using more measurements, the measurement time of
N9 models is more than 6 hours even for our simple heterogeneous cluster.
Thus, a further reduction in the measurement time for model construction is
a priority.

In this section, we reduce the measurements for N and determine the result.
Cluster configuration parameters are the same as those in Table 3, except that
only 5 sizes of HPL (N = 400, 800, 1600, 3200, and 6400) are measured. These
models are designated as N5 models in the following discussion. We can also
reduce measurements for P , but that will be evaluated later in Section 4.2. In
this section, N5 models are constructed using eight P2s as N9 models.

The consequent measurement time is 15265 seconds (about 4.2 hours), which
is about two thirds that of N9 models. As seen in Table 4, most of the mea-
surement time is consumed by Pentium-II. Since our heterogeneous cluster
consists of fewer fast processors and more slow processors (see Table 1), P-T
models of Athlon are composed using the measurements of slow Pentium-IIs,
significantly prolonging the measurement time. If we had three or more of
the faster Athlon processors, we could use them to compose Pentium-II P-T
models, thus considerably reducing the total measurement time.

The evaluation results of N5 models are summarized in Table 6. Optimal or
sub-optimal configurations were determined using N5 models. Although the
errors of N5 models are greater than those of N9 models, the excess time of
the estimated optimal configuration is less than 7.4%. The error in estimated
optimal execution time was less than 14.6%. In conclusion, N5 models prove
to be almost as accurate as N9 models, while reducing the measurement time
to 66.7% of the latter.

Although N5 models show a good fit with reality, they still require considerable
time for measurements. Since the measurements for a large N take a long time,
we then attempt to reduce the measurement time by constructing models
from small Ns. The configuration parameters are the same as those in N5
models, except that 5 small sizes of HPL (N = 400, 600, 800, 1200, and 1600)

17

PREPRIN
T



Table 7
Errors in estimated best configurations vs. measured best configurations (N5S mod-
els).

Size Estimated best configuration Actual best configuration Error

N P1, M1, P2, M2 τ τ̂ P1, M1, P2, M2 T̂ (τ − T̂ )/T̂ (τ̂ − T̂ )/T̂

1600 1, 1, 0, 0 2.84 2.82 1, 1, 0, 0 2.82 0.007 0.000

3200 1, 4, 8, 1 18.25 32.83 1, 1, 0, 0 20.42 -0.106 0.608

4800 1, 5, 8, 1 28.24 79.24 1, 1, 8, 1 64.00 -0.559 0.238

6400 1, 5, 8, 1 26.64 142.05 1, 2, 8, 1 125.24 -0.787 0.134

8000 1, 5, 8, 1 3.82 245.21 1, 3, 8, 1 222.86 -0.983 0.100

9600 1, 5, 8, 1 -49.66 374.49 1, 4, 8, 1 340.86 -1.146 0.099
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Fig. 9. Failure of model construction (P2 = 8, M2 = 5).

are measured. The models thus derived are referred to as N5S models in the
following discussion. The total measurement time of N5S models is 1299.3
seconds (21.5 minutes), which is as little as 5.7% of that in N9 models.

The evaluation results of N5S models are summarized in Table 7. It is obvious
that the behavior of τ is irregular. For 4800 ≤ N ≤ 9600, τ decreases as N
increases with the same configuration, which should not occur. The actual
execution time τ̂ increases as N increases, which can be seen in Table 7.

This anomaly of τ is caused by a failure of parameter extraction. Figure 9
illustrates the measurement results and the derived N-T model of P2 = 8 and
M2 = 5. This model yields a negative estimation time for N > 5000, which
makes no sense. Although it is possible to extract four coefficients from five
measurements, the derived model would be inaccurate, making such empirical
models invalid for extensive extrapolations. We cannot build accurate models
without measuring a sufficient number of executions of the appropriate size.

It may seem problematic that the estimated optimal configurations of N5S
models are not far from the actual optimal configurations. This is due to the
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Table 8
Cluster configuration parameters for Athlon, Pentium-III, and Pentium-II.

Size Athlon Pentium-III Pentium-II Num. of

N P1 M1 P2 M2 P3 M3 config.

Model Const. 400, ..., 6400 1 1, ..., 6 1, ..., 4 1, 2, 3 1, ..., 8 1, ..., 6 66

Model Eval. 1600, ..., 9600 0, 1 1, ..., 6 0, ..., 4 1, 2, 3 0, ..., 8 1 818

positive correlation between estimations and measurements. Figure 10 displays
the correlation of N = 9600. Although the error in estimation time is large, the
configurations of the short estimation time actually show a correspondingly
short execution time. Therefore, the estimated optimal configuration is not
far from the actual optimal configuration, even if it is not actually optimal.

4.2 Heterogeneous cluster of Athlon, Pentium-III, and Pentium-II

In the previous section, we evaluated our scheme using a simple heterogeneous
cluster with 2 kinds of processors. Here we examine a larger heterogeneous
cluster, which consists of 13 processors (3 groups), shown in Table 1. In this
section, P1, P2, and P3 designate the respective number of Athlon, Pentium-
III, and Pentium-II processors used for the HPL. M1, M2, and M3 represent
the number of processes invoked on each Athlon, Pentium-III, and Pentium-II,
respectively. The models are constructed from the measurements of 9 sizes of
N , which are the same as those in N9 models (Section 4.1.2).

Measurements for the model construction were made for every combination of
parameters in the “Model Construction” of Table 8. Models were constructed
for each group, giving a total of 66 combinations, i.e., 6 for Athlon, 12 for
Pentium-III, and 48 for Pentium-II. The total measurement time is 28069
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Table 9
HPL execution time for measurements of Athlon, Pentium-III, and Pentium-II.

Size N Athlon [sec.] Pentium-III [sec.] Pentium-II [sec.]

400 3.9 9.3 96.7

600 7.4 16.0 130.1

800 10.8 22.6 178.8

1200 20.5 51.0 305.2

1600 37.4 104.7 508.5

2400 97.5 228.7 1117.3

3200 197.2 464.0 2042.2

4800 566.0 1350.7 5360.0

6400 1239.5 2953.0 10950.3

Total 2180.2 5199.9 20689.1

Table 10
Errors in estimated best configurations vs. measured best configurations, where
Pentium-III P-T models were constructed from measurement results.

Size Estimated best configuration Actual best configuration Error

N P1, M1, ..., P3, M3 τ τ̂ P1, M1, ..., P3, M3 T̂ (τ − T̂ )/T̂ (τ̂ − T̂ )/T̂

1600 1, 1, 0, 0, 0, 0 3.38 3.47 1, 1, 2, 2, 0, 0 3.33 0.014 0.042

3200 1, 4, 0, 0, 8, 1 24.64 33.49 1, 1, 2, 2, 0, 0 18.33 0.344 0.827

4800 1, 4, 0, 0, 8, 1 63.15 74.79 1, 2, 2, 2, 0, 0 51.61 0.224 0.449

6400 1, 5, 4, 3, 8, 1 108.98 129.54 1, 2, 2, 2, 0, 0 104.65 0.041 0.238

8000 1, 4, 4, 3, 8, 1 202.36 204.01 1, 2, 4, 2, 8, 1 188.60 0.073 0.082

9600 1, 5, 4, 3, 0, 0 314.81 385.58 1, 3, 4, 2, 8, 1 292.77 0.075 0.317

seconds (7.8 hours), as shown in Table 9.

Though Athlon P-T models are built from Pentium-II P-T models as stated
in Section 4.1.2, Pentium-III P-T models can be constructed from the mea-
surement results of Pentium-III. Since we have four Pentium-III processors in
the cluster, it is possible to construct Pentium-III P-T models from three N-T
models of P2 = 2, 3, and 4. The configuration P2 = 1 is not usable for P-T
models, since Pi > 1 must hold when P-T models are used (cf. Section 3.4).

Table 10 summarizes the evaluation results of these models. As readily seen,
the errors are significant, and the estimated optimal configurations are far from
satisfactory. Thus, we are concerned that Pentium-III P-T models may not be
accurate enough. We can construct a P-T model from three N-T models, but
that is the minimum number needed to extract three coefficients.

Hence, we attempted another evaluation, in which Pentium-III P-T models
are built from Pentium-II P-T models. Since Pentium-II P-T models are con-
structed with 8 processors, they are expected to be more accurate. Pentium-
III P-T models were composed by simply scaling Pentium-II P-T models by
a constant factor of 0.637. The evaluation results are shown in Table 11.
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Table 11
Errors in estimated best configurations vs. measured best configurations, where
scaled Pentium-II P-T models were substituted for Pentium-III P-T models.

Size Estimated best configuration Actual best configuration Error

N P1, M1, ..., P3, M3 τ τ̂ P1, M1, ..., P3, M3 T̂ (τ − T̂ )/T̂ (τ̂ − T̂ )/T̂

1600 1, 1, 4, 1, 0, 0 3.25 4.38 1, 1, 2, 2, 0, 0 3.33 -0.023 0.315

3200 1, 2, 4, 1, 0, 0 17.11 22.98 1, 1, 2, 2, 0, 0 18.33 -0.067 0.254

4800 1, 2, 4, 1, 0, 0 47.58 59.23 1, 2, 2, 2, 0, 0 51.61 -0.078 0.148

6400 1, 2, 4, 1, 0, 0 100.48 118.90 1, 2, 2, 2, 0, 0 104.65 -0.040 0.136

8000 1, 4, 4, 1, 8, 1 179.30 218.27 1, 2, 4, 2, 8, 1 188.60 -0.049 0.157

9600 1, 4, 4, 1, 8, 1 270.37 343.51 1, 3, 4, 2, 8, 1 292.77 -0.076 0.173

The estimated optimal configurations now seem rational and sub-optimal. The
errors in estimated optimal execution time are less than 8%, which is good
enough for practical use. The excess time of estimated optimal configurations
ranged from 13.6% to 31.5%, which is tolerable but not very satisfactory.

Let us examine the cases when N = 4800 and 6400, in which the estimated
optimal configuration was (P1,M1, P2,M2, P3,M3) = (1, 2, 4, 1, 0, 0) for both
cases, while the actual optimal configuration was (1, 2, 2, 2, 0, 0). Here, we have
to keep in mind that each of our Pentium-III nodes is a dual-processor system.
We used two processors of two separate nodes (one processor for each node)
in the measurements of P2 = 2. Since two processes on a dual-processor node
are simultaneously dispatched to two individual processors, (P2,M2) = (4, 1)
is basically equivalent to (2, 2). From this point of view, our models have
succeeded in determining the optimal configuration for N = 4800 and 6400.

However, the fact is that the measured execution time of (1, 2, 4, 1, 0, 0) is
about 14% slower than that of (1, 2, 2, 2, 0, 0), which directly leads to the excess
in the estimated optimal execution time. We infer that this is due to the differ-
ence in data allocation (or process allocation). If all nodes were single-processor
nodes, (1, 2, 2, 2, 0, 0) would have been much slower than (1, 2, 4, 1, 0, 0).

In constructing models for this present study, we did not pay any special at-
tention to dual-processors or multi-processors. Therefore, it is very reasonable
to conclude that our scheme could not handle such special cases properly but
chose the case (P2,M2) = (4, 1) rather than (P2,M2) = (2, 2). The improve-
ments for proper handling of the dual or multi-processors are left for future
studies.

5 Conclusion

The results of this study are still preliminary, and many improvements are
anticipated. Moreover, more extensive studies are required for various cluster
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configurations. Our aim, however, remains (1) to make the estimation model
more elegant and unified, (2) to reduce the model construction time, and (3)
to reduce the errors in estimation.

One of the major concerns of this approach might be the scalability. The es-
timated best configuration was not very satisfactory in Section 4.2, because
of the estimation error of dual-processor nodes. This is not the problem of
scalability, but the problem of modeling. We have to examine a larger hetero-
geneous cluster with more precise models to investigate the scalability of our
method.

In the present study, all possible configurations were examined to determine
the estimated optimal configuration. This took no more than a second in
our experiments. However, for larger and more heterogeneous clusters, it is
essential to find a way to reduce the search space. Approximation algorithms
(e.g., heuristics) and a branch-and-bound method may be worth considering
for this purpose.

Although our method is expected to be applicable to other parallel applica-
tions, this study was confined to one specific application (HPL). It is essential
to examine other applications to show the advantages and limitations of this
method. All such tasks must be left to future studies.
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