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Abstract

While multi-core processors became crucial elements
of high-performance computing, the clusters of multi-core
processors are still difficult target for optimization, since the
communication time differs significantly in intra-node com-
munication and inter-node communication. It is thus very
important to select the optimal configuration of multi-core
clusters; i.e., to find the optimal number of processes and to
find the optimal allocation of processes to nodes. This study
first elucidates the multi-core specific issues by examining
the effect of process allocation in a multi-core cluster, us-
ing divergent and convergent allocations of four benchmark
programs. Then, the estimation of optimal configuration is
attempted for divergent and convergent allocations, using
execution-time estimation models for single-core clusters.
Though the estimation errors were less than 20% in most
cases, further improvement is expected by incorporating the
enhancements for multi-core systems into estimation mod-
els.

1 Introduction

Recently, multi-core processors are very popular for their

performance and power efficiency. They have already be-

come the mainstream in servers and desktop computers, and

the clusters of multi-core processors (multi-core clusters)

are becoming more and more important. The effective use

of multi-core clusters is an urgent matter in scientific com-

puting.

A multi-core cluster is categorized as an SMP clus-

ter, which consists of symmetrical multiprocessors (SMP).

Such systems are known to be difficult targets for opti-

mization, because the communication time differs largely

in intra-node communication and inter-node communica-

tion. Consequently, the performance of multi-core cluster

is largely affected by process allocation, which determines

the communication paths between processes. It is a very

difficult task to select the best process allocation, since it

is dependent on the nature of application program. Section

3 of this work describes the evaluation results of two poli-

cies with four applications, and highlights some multi-core

specific issues.

Another purpose of this study is to explore the means

to find the best configuration of multi-core clusters. Here,

the best configuration designates the configuration that min-

imizes the execution time for a given problem size, where a

configuration of cluster designates the number of processes

and the allocation of processes. For conventional single-

core clusters, a scheme to estimate the best configuration

is already presented [8][9][6]. Section 4 of this study de-

scribes the attempt to estimate the optimal configuration for

our multi-core cluster.

2 Related Studies

The performance evaluation and analysis of multi-core

clusters have been presented by a number of groups re-

cently. Chai, Gao, and Panda [2] studied the impact of

multi-core architecture on cluster computing, evaluating

parallel benchmark programs with dual-core Xeon proces-

sors on Intel Bensley system. They pointed out that po-

tential bottlenecks might include intra-node communica-

tion, inter-node communication, cache, and memory con-

tention. Pourreza and Graham [14] explored three issues to

utilize multi-core clusters: communication efficiency, pro-

cess affinity, and initial process distribution. They exam-

ined NAS parallel benchmarks (NPB), and suggested that

some programs (e.g., IS kernel) benefit from process affin-

ity. They also pointed out that processes should be dis-

tributed to balance the communications among nodes.

These studies analyzed the factors that affect the perfor-

mance of multi-core clusters, which are suggestive for per-
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formance optimization of multi-core clusters. Meanwhile,

they did not provide a systematic method to derive maximal

performance from a multi-core cluster. This study discusses

a method to estimate the optimal configuration of a multi-

core cluster.

Alam et al. [1] reported the various aspects of a par-

allel computer with AMD Opteron dual-core processors,

and pointed out that an appropriate use of processor affin-

ity can result in 25% performance improvement for scien-

tific applications. Particularly in STREAM benchmark, bet-

ter performance was derived by leaving one of cores un-

used compared to making full use of cores. Luecke and

Li [10] evaluated NPB on Intel Xeon and AMD Opteron

dual-core Linux clusters, and found that better performance

can sometimes be achieved with a single MPI process per

node. Pinto, Tomazella, and Dantas [13] investigated intra-

node and inter-node communication behavior of four cluster

setups, and proposed to leave one core per host idle in order

to process communication overhead of a running applica-

tion.

These studies are interesting in that they pointed out that

using all cores is not always the best policy. However, they

did not provide a method to find the optimal configuration,

since they lack the viewpoint that the optimal configura-

tion is dependent on both the application and problem size.

Meanwhile, this study focuses on this very point.

Other researchers aimed at optimizing communication

for multi-core clusters. Specifically, MPI implementations

for multi-core or SMP clusters have been discussed by the

following groups. Chai, Hartono, and Panda [3] presented a

new design for MPI intra-node communication that is suited

for SMP or multi-core nodes. Chen et al. [4] proposed a

profile-guided approach to find the optimized process map-

ping to minimize communication cost for arbitrary MPI ap-

plications.

Although minimizing the communication cost may re-

duce the execution time, it does not solely guarantee the op-

timal execution time. As shown in the following sections,

selecting the optimal number of processes is a prerequisite.

This study focuses on a method to find the optimal process

allocation considering the balance of computation, commu-

nication, and memory bandwidth.

3 Effect of Process Allocation

3.1 Evaluation Platform

The evaluation platform of this study is a quad-core clus-

ter comprised of four nodes, each of which consists of an

Intel Core 2 Quad Q6600 processor (2.4 GHz) [7] with 4

GB of memory. A Q6600 processor contains two 4 MB

L2 caches, each of which is shared by two cores; i.e., each

Q6600 consists of two dual-core processors, which are con-

nected by FSB (front side bus) each other. Then, four nodes

of Q6600 are connected by a Giga-bit Ethernet switch.

The following four benchmarks were chosen for perfor-

mance evaluation, which are the same as in the previous

study [6]. Intel C/Fortran compilers on FedoraCore 6 were

used for compilation with mpich-1.2.7p1 and Atlas 3.60 li-

braries.

• Himeno benchmark [5] solves a pressure Poisson

equation with Jacobi iteration.

• HPCMW [11] measures the performance of three-

dimensional linear elastic finite-element application.

• HPL (high-performance Linpack) [12] solves a ran-

dom dense linear system of equations.

• FFTE [15] measures the double precision com-

plex one-dimensional DFT (one-dimensional discrete

Fourier transforms).

3.2 Process Allocation Policies

Let us start with investigating the optimal configuration

of a single-core cluster, before discussing a multi-core clus-

ter. Figure 1 summarizes the execution time of HPL bench-

mark, measured with a cluster of eight Pentium 4 (3.6 GHz)

processors with Gigabit Ethernet. In Fig. 1(a), P repre-

sents the number of processes, or the number of nodes; e.g.,

P = 4 means that HPL was executed with four nodes, each

of which accommodates one MPI process of HPL.

It is readily seen from Fig. 1(a) that the optimal P
depends on the problem size N . For small sizes (N =
400 − 1600), the execution time is minimized with P = 1;

for middle sizes (N = 2400, 3200), P = 4 is best; for large

sizes (N = 4800 − 9600), using all nodes (P = 8) is the

best choice. This phenomenon is interpreted as follows.

The execution time consists of computation time and

communication time. Using more nodes, the computation

time of each node is reduced, since the computational load

is distributed among nodes; meanwhile, the communication

time among nodes increases. In a small-sized problem, the

computation time is smaller than the communication time;

it is thus better to use fewer nodes. In a large problem, the

execution time is reduced by using more nodes, because the

computation time is a dominant factor. Figure 1(b) defi-

nitely supports this working hypothesis. It is hence very

important to select the best P in accordance with the prob-

lem size N for both performance optimization and effective

resource utilization.

Though the best configuration solely depends on P in a

single-core cluster, things are more complicated in a multi-

core cluster. Since communication time differs largely for
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Figure 1. The execution time of HPL benchmark, measured by a PC cluster comprised of eight Pen-
tium 4 (3.6 GHz) nodes.
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Figure 2. Process allocation policies for
multi-core clusters.

on-chip, intra-node, and inter-node communications, the

communication time is strongly influenced by the allocation

of processes.

Though there are many possibilities to allocate processes

to cores, it is impossible to examine every allocation poli-

cies in this current study. Therefore, two distinctive poli-

cies are examined in the following discussion (Fig. 2). The

first allocation policy is “converge”, where the processes

are allocated to use as few nodes as possible. Convergent

allocation naturally reduces the inter-node communication

between processes. The second policy is “diverge”, where

the processes are allocated to use as many nodes as possi-

ble, while balancing the number of processes in each node.

With divergent allocation, the cache capacity and memory

bandwidth for each process are maximized in exchange for

increased inter-node communication.

Figure 2 illustrates two allocation policies in case of our

multi-core cluster. Since our cluster consists of four quad-

core processors, it is natural to assume 1 ≤ P ≤ 16, where

P is the total number of processes. In Fig. 2, each rectangle

represents a core, and four adjacent cores correspond to a

Core 2 Quad processor. The numbers shown in rectangles

designate the order of process allocation; i.e., P processes

are allocated to the cores numbered from 1 to P in order.

3.3 Measurement Results

Figure 3 summarizes the execution times of four bench-

marks with two allocation policies.

In Himeno benchmark (N = 256), divergent allocation

is superior to convergent allocation overall (Fig. 3(a)). With

divergent allocation, the execution time decreases quickly

in incrementing P from 1 to 4; meanwhile, with convergent

allocation, the execution time does not decrease substan-

tially between P = 1 and P = 4. These facts suggest

that the bottleneck of Himeno benchmark exists in memory

bandwidth for this size (N = 256). The identical behavior

is observed in even smaller sizes.

In case of convergent allocation, discontinuities are

found at P = 4 and P = 12. It is natural to find the dis-

continuities there, because the total memory bandwidth de-

pends on the number of nodes. In divergent allocation, the

execution time exhibits an obvious discontinuity at P = 5,

which is caused by memory access imbalance. In case of

P = 5, node 1 accommodates two processes, whose perfor-

mances are degraded by sharing memory bandwidth; thus

the processes on node 1 become the bottleneck of the over-

all execution time. Similar behavior is observed at P = 9,

as expected.

The results of HPCMW benchmark (Fig. 3(b)) are very

similar to that of Himeno benchmark. It should be noted

that it is mandatory in HPCMW to use P that is a factor

of N ; hence, there are no data for P = 7, 9, ..., 16 in Fig.

3(b) where N = 600. Divergent allocation is superior to
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Figure 3. Comparison of two allocation policies for four benchmark programs.

convergent allocation for most P in HPCMW, and disconti-

nuities are found where P is a multiple of 4. Although Fig.

3(b) summarizes the case of N = 600, similar characteris-

tics are observed in even smaller sizes. Obviously, memory

bandwidth is the bottleneck in HPCMW benchmark.

HPL benchmark (Fig. 3(c)) behaves much differently

from Himeno and HPCMW benchmarks. Although conver-

gent allocation is superior to divergent allocation, the dif-

ference is not large for N = 9600. The execution time

of HPL decreases almost monotonically in both allocations,

which implies that the computation time is a dominant fac-

tor in both allocations. On the other hand, the difference be-

tween divergent and convergent allocations becomes larger

in smaller sizes, which is naturally interpreted as the effect

of communication time. Since the respective computation

and communication times of HPL are O(N3) and O(N2),
the ratio of communication to total execution time becomes

larger in smaller sizes of problems.

Figure 3(d) summarizes the results of FFTE benchmark

of N = 220. Since it is mandatory in FFTE to use N of

a power of two and a multiple of P 2, only P = 2i (0 ≤
i ≤ 4) are plotted in Fig. 3(d). The results of FFTE bench-

mark exhibit peculiar behavior, which can be interpreted as

follows.

As Ichikawa et al. [6] reported, all-to-all communication

is a dominant factor in the execution time of FFTE bench-

mark. In divergent allocation, the execution time increases

as P increases from 1 to 4, which is caused by the increase

of inter-node communication. For P = 4, 8, and 16, all four

nodes are used, while more cores are allocated in each node.

Thus, there is a difference of nature between 1 ≤ P ≤ 4 and

4 ≤ P ≤ 16 of divergent allocation.

In convergent allocation, only one node is used for 1 ≤
P ≤ 4, where all communication is performed by intra-

node communication; meanwhile, two or four nodes are

used for P = 8 and P = 16, where inter-node commu-

nications are performed. Thus, it is natural to find a discon-

tinuity between 1 ≤ P ≤ 4 and 8 ≤ P ≤ 16.

4 Estimation of Optimal Configuration

As shown in Section 3, it is generally difficult to find

the optimal configuration of a cluster. The P that mini-

mize T depends on both problem size N and process al-

location. The best process allocation is also not obvious,

since it heavily depends on the nature of the target applica-



tion. Things become even more complicated in multi-core

clusters, because of discontinuous behavior of T against P .

Thus, a systematic method is desired to estimate the optimal

configuration of a multi-core cluster.

Kishimoto and Ichikawa [8][9] presented a scheme to es-

timate the optimal configuration of a heterogeneous clus-

ter, i.e. the optimal subset of PEs and the optimal pro-

cess allocation. They constructed the execution-time esti-

mation models from the measurement results of HPL [12],

and showed that the optimal or sub-optimal configurations

were actually estimated for various sizes. Ichikawa, Taka-

hashi, and Kawai [6] further enhanced this scheme, and

showed that their new models (NP-T models) can estimate

sub-optimal configurations for HPL, HPCMW, FFTE, and

Himeno benchmarks.

The purpose of this section is to verify the above mod-

els with our multi-core cluster. Since their models were

originally developed for single-core clusters, it is not clear

whether these models are practically applicable to multi-

core clusters (and how good their estimations are). As stated

in Sect. 3, the behavior that is specific to multi-core clusters

may have a negative impact on the estimation quality. Thus,

we start with evaluating the original models as they are, and

then proceed to the discussion of possible improvements.

In the evaluation of this section, we constructed N-

T and NP-T models with non-negative least squares

method [9][6]. Since the target applications are all the

same, model equations were also taken from the previous

study [6]. Following the previous studies, NP-T models

were adopted for P �= 1, while N-T models were adopted

for P = 1. More details of model construction are found in

the previous studies [9][6].

Once the models are constructed, the execution time T
can be estimated for arbitrary P and N . That is, the opti-

mal P can be estimated by selecting the P (1 ≤ P ≤ 16)
that minimize T for a given N . It should be noted that the

estimated optimal P (estimated P , in short) is not necessar-

ily equal to the actual optimal P (optimal P , in short). The

models are no more than the approximations of reality, and

inevitably involve approximation errors.

The overall estimation error (ε) is defined by the follow-

ing equation, where τ̂ and T̂ are the respective actual exe-

cution times of the estimated optimal P and of the actual

optimal P . In other words, ε represents the overhead of the

estimated P over the optimal P .

ε =
τ̂

T̂
− 1 (1)

As shown in Sect. 3, the profiles of divergent and con-

vergent allocations are quite different. Therefore, we build

and evaluate the models for divergent and convergent allo-

cations separately, in this current study. Although it would

be desirable to formulate a general scheme to include diver-

gent and convergent allocations as special cases, it is left for

future studies.

Figure 4 summarizes the estimation results of four

benchmark programs by two allocation policies. Each

graph presents (1) the estimated optimal P and the actual

optimal P with bars, and (2) the estimation error (ε or ep-

silon) with lines.

In convergent allocation of Himeno benchmark (Fig.

4(a)), the optimal P increases from 4 to 16 in accordance

with size N , while the estimated P ranges from 14 to 15.

The errors are quite small in most sizes, except in small

sizes. Though the relative errors (ε) of small sizes look

large, it is not serious because the absolute difference in

execution time is small.

In divergent allocation (Fig. 4(b)), the optimal P re-

mains small and the estimated P matches to the optimal

P quite well. It should also be noted that the optimal ex-

ecution time of divergent allocation is smaller than that of

convergent allocation for most sizes (e.g, Fig. 3(a)), while

using a smaller number of processes. Our models success-

fully estimated these facts.

Figure 4(c) summarizes the convergent allocation of

HPCMW. The optimal P ranges from 12 to 16, while the es-

timated P ranges from 10 to 15. Though the errors are small

for most sizes, there are some exceptions. Since there is a

constraint in HPCMW that P must be a factor of N , P can-

not take contiguous values, which makes HPCMW a diffi-

cult target for optimization. For example, in case N = 510,

the optimal P was 15, while the estimated P was 10. Al-

though P = 10 is the second-best choice, the resulting error

becomes approximately 30%.

The optimal P of divergent allocation for HPCMW is

smaller than that of convergent allocation (Fig. 4(d)); the

optimal execution times are also smaller, as in Himeno

benchmark. Our models succeeded to estimate the optimal

or sub-optimal P with modest errors.

HPL is a relatively easy target for estimation (Figures

4(e) and 4(f)). In both allocations, the optimal P increases

according to the size N , while the estimated P reproduces

this behavior quite well. The estimation errors remain very

small in both allocations.

FFTE exhibits peculiar behavior (cf. Sect. 3), which

makes the estimations difficult. As readily seen from Fig-

ures 4(g) and 4(h), the estimated P monotonically increases

as N increases, while the optimal P does not. Although the

overall error (ε) remains modest, the estimations are not sat-

isfactory. The considerations of multi-core specific issues

seem essential to improve the estimation of FFTE. These

are left for future studies.



5 Conclusion

This study presented two process allocation policies for

multi-core clusters, which were examined with the execu-

tion times of four benchmark programs. The estimation

functions of execution time were constructed, and the es-

timation of the optimal configuration for our multi-core

cluster was attempted. Though the optimal or sub-optimal

configurations were found in most cases with conventional

models, there are still some exceptions where the errors be-

come large. More consideration of multi-core specific is-

sues is required for more accurate estimations.

In the following studies, the evaluation with larger num-

ber of nodes should be conducted. Since the quality of mod-

els largely depends on the number of measurements, more

nodes are necessary for more precise discussions.

Another urgent issue is the enhancement of models for

multi-core clusters. Though this study examined the model

equations of continuous functions [6], as a basis of evalu-

ation, the actual execution time on a multi-core cluster be-

comes a discontinuous function as shown in Section 3. Now

that we finished the evaluation of the continuous models, we

have to proceed to considering discontinuous functions for

multi-core clusters.

More variations of process allocation should be exam-

ined, also. Although two typical allocations were examined

in this current study, there are many other allocation poli-

cies, which should be explored. At the end, it is desirable to

find the best allocation policy automatically. Generalizing

the models that subsumes process allocation policies might

be worth considering.
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(a) Himeno benchmark (converge).
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(b) Himeno benchmark (diverge).

0

4

8

12

16

      6
0

 

     1
2

0
 

     1
8

0
 

     2
4

0
 

     3
0

0
 

     3
6

0
 

     4
2

0
 

     4
8

0
 

     5
1

0
 

     5
4

0
 

     5
7

0
 

     6
0

0
 

Size N

P

0.0

0.1

0.2

0.3

0.4

0.5

e
rr
o
r

estimated P optimal P epsilon

(c) HPCMW benchmark (converge).
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(d) HPCMW benchmark (diverge).
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(e) HPL benchmark (converge).
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(f) HPL benchmark (diverge).
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(g) FFTE benchmark (converge).
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(h) FFTE benchmark (diverge).

Figure 4. Estimation results of two allocation policies for four benchmark programs.
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