
PRELIMINARY STUDY OF CUSTOM COMPUTING HARDWARE
FOR THE 3X+1 PROBLEM

Shuichi Ichikawa and Naohiro Kobayashi

Department of Knowledge-based Information Engineering,
Toyohashi University of Technology

1-1 Hibarigaoka, Tempaku, Toyohashi 441-8580, Japan
E-mail: ichikawa@tutkie.tut.ac.jp

ABSTRACT

The 3x + 1 problem is a simple but unsolved problem
in number theory. Though computational verifications
have been attempted for this problem, they are very
time-consuming. This study describes the custom hard-
ware designs for the 3x+1 problem, and discusses the
feasibility of acceleration. A prototype hardware was
implemented and evaluated with an Altera FPGA.

Keywords: Number theory, conjecture, numerical ver-
ification

1. INTRODUCTION

The 3x + 1 problem concerns the behavior of iterates
of the following function:

T (n) =
{

(3n + 1)/2, if n ≡ 1 (mod 2),
n/2, if n ≡ 0 (mod 2),

(1)

where n is a positive integer (n = 1, 2, 3, ...). Apply-
ing T (n) recursively, the following function T (k)(n) is
defined.

T (k)(n) =
{

T (T (k−1)(n)), if k ≥ 1,
n, if k = 0.

(2)

The sequence {T (k)(n) : k = 0, 1, 2, ...} is called the
T-trajectory of n. For example, the T-trajectory of 3 is
{3, 5, 8, 4, 2, 1, 2, 1, ...}.

The 3x+1 conjecture asserts that there exists some
k such that T (k)(n) = 1. In other words, the repeated
application of T (n) eventually produces the value 1.
Although the 3x + 1 conjecture is simple to state, it is
still unsolved [1]. Many studies have been done on the
3x + 1 problem and its derivatives. Some of them may
be found in the references of preceding studies [1] and
[2].

To find clues to solve the problem (and to find some
counterexamples, if any), several computational verifi-
cations have been attempted. Oliveira e Silva [3] ver-
ified the conjecture up to 3 × 253, which took 4 CPU
years with 4 DEC Alpha machines. Roosendaal [4] is
currently extending the record with an internet-based
distributed computing program.

0-7803-8560-8/04/$20.00 c©2004IEEE

for (m = start; m <= end; m += 2) {
n = m;
do {

if (n & 1) n += (n >> 1) + 1;
else n >>= 1;

} while (n > m);
/* n <= m holds here */
if (n == m) {

/* counterexample found! */
}
/* n < m : conjecture holds */

}

Fig. 1. An example of a 3x+1 program.

Though the 3x + 1 problem seems simple enough
for hardware implementation, there have been no stud-
ies on custom circuit implementation of this problem.
The present study describes the preliminary designs of
custom hardware for the 3x + 1 problem with some
evaluation results.

2. STRATEGIES

It is inefficient to implement the 3x + 1 problem liter-
ally. For example, we can terminate the iteration when
T (k)(n) < n, if the conjecture is already verified for
∀m < n. For the same reason, we do not have to ex-
amine even numbers, because an even number imme-
diately becomes n/2, which is smaller than n.

Figure 1 shows an example of a 3x + 1 program.
The variables start and end are odd numbers, and
the loop variable m is incremented by 2 to examine
only odd numbers. When n is odd, (3n + 1)/2 =
n + �n/2� + 1 is calculated. This calculation can be
implemented by one shift and two additions, without
using multiplication. When n is even, only one shift
is required. If n = m holds after the do–while state-
ment, this m is a counterexample of the conjecture be-
cause the trajectory of m forms a loop that does not
include the value 1. This do–while loop may not fin-
ish for some m, if the conjecture does not hold and the
sequence of n diverges.

As mentioned above, we can skip even numbers in
the 3x + 1 program. Moreover, we can skip the n such
that n ≡ 1 (mod 4), because T (T (n)) < n holds for

ichikawa
テキストボックス
© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Digital Object Identifier : 10.1109/TENCON.2004.1414951

all n = 4k + 1 (k > 0) as shown below.

T (T (n)) = T (T (4k+1)) = T (6k+2) = 3k+1 < n.

This means that we only have to examine the n such
that n ≡ 3 (mod 4).

Another improvement is to integrate two or more
steps of T (n) into one. For example, assume that n ≡
3 (mod 4). We can calculate the following polynomial
T (T (n)) instead of T (n).

T (T (n)) = T (T (4k + 3)) = T (6k + 5)
= 9k + 8 = 9�n/4� + 8 (k ≥ 0).

Such methods are called composite polynomials [5].
The following equation chooses one of four functions
according to the least two bits of n, and thus is called
a 2-bit composite polynomial. This technique can be
naturally generalized to k-bit composite polynomials
(k ≥ 2).

C(n) =

⎧⎪⎪⎨
⎪⎪⎩

3�n/4� + 1, if n ≡ 1 (mod 4),
3�n/4� + 2, if n ≡ 2 (mod 4),
9�n/4� + 8, if n ≡ 3 (mod 4),

make odd(n), if n ≡ 0 (mod 4).

(3)

Here, the function make odd(n) shifts out the lower-
most zeros of n and makes C(n) odd, as shown in the
following piece of code:

make_odd(n) {
while ((n & 1) == 0) n >>= 1;
return n;

}

All these acceleration techniques (and many oth-
ers) are presented by Leavens and Vermeulen [5] and
Oliveira e Silva [3]. Some of their techniques are equally
applicable to software and hardware, while some are
specific to software implementation. Although it is
very important to examine their techniques one by one,
it is beyond the scope of this study. In the rest of this
paper, we concentrate on the techniques described in
the above discussion.

It is obvious that the variable n (in Fig. 1) has to
be long enough to avoid calculation errors (overflows),
but it is not evident how long it should be. The max-
imum excursion of the trajectory n, which is denoted
by t(n), is the maximum value of T (k)(n) for k ≥ 0, if
it exists, or infinity, otherwise. No proof is yet known,
but Oliveira e Silva [3] reported that t(n) < 8n2 holds
for all n < 3 × 253. This fact means that the variable
n should be longer than (2 log2 m + 3) bit, where m
is the variable m in Fig. 1. If we are going to explore
m ∼ 260, we have to prepare 123-bit (or even longer)
variables and arithmetics. Therefore, we have to use
multiple-precision arithmetic for the 3x + 1 problem.

3. CIRCUIT DESIGNS

This section describes the custom circuit designs for
the 3x+1 problem. In the present study, 140-bit arith-
metic units are designed for n < 264 with overflow

checker hardware. Even if t(n) becomes exceptionally
large, or even if the do–while statement in Fig. 1 di-
verges by any chance, such events will be detected by
the overflow checker.

All designs are written in VHDL, and targeted for
an Altera Stratix FPGA (EP1S10F780C7), which con-
tains 10570 logic elements (LEs) [6]. All VHDL source
codes were processed by Altera Quartus II 3.0 software
for analysis, synthesis, fitting, assembly, and timing-
analysis.

In this study, five design alternatives are examined.
Table 1 summarizes the evaluation results of these de-
signs for 3 ≤ n ≤ 220. The logic scale and maxi-
mum operational frequency are derived from Quartus
II output. The cycle count is calculated with a cycle-
exact simulator of each design. The execution time is
estimated from the cycle count and maximum opera-
tional frequency. Area-Time product (AT product) is
the product of logic scale and execution time, and thus
it is regarded as the reciprocal of performance density.
A smaller AT product means that each unit requires
a smaller area for the same performance, and that we
can implement more units in the same area to squeeze
more performance from there. Since the 3x + 1 con-
jecture can be verified in parallel for different blocks of
numbers, AT product is a very important measure for
evaluation.

The first design, Naive, is a literal implementation
of the 3x + 1 problem. It applies T (n) step by step
for all n (even and odd), and thus requires many clock
cycles. Although Naive operates at a relatively high
clock frequency, the total execution time is rather long.
The logic scale of Naive is small, but AT product is
degraded by a long execution time.

The second design CP2 implements 2-bit compos-
ite polynomials, which are shown in Eq.(3). CP2 ex-
amines only the numbers such that n ≡ 3 (mod 4) to
reduce cycles. The block diagram of CP2 is shown in
Fig. 2. Unit A is a down-shifter to calculate �n/4� and
make odd(n). Unit B is an up-shifter to make 2�n/4�
and 8�n/4� from �n/4�. Unit C calculates the polyno-
mials shown in Eq.(3). Unit D finds and records the
maximum excursion t(n). Shifters in unit A and B
were implemented with lpm clshift in LPM (the
library of parameterized modules) [7], which provides
technology-dependent library functions for Altera FPGA.
The clock cycle of CP2 is only 26% of Naive. How-
ever, CP2 is twice as large in logic scale and operates
at a slower clock frequency than Naive, consequently
making the AT product inferior to Naive. These prob-
lems are mainly caused by unit A, which contains a
140-bit wide priority-encoder and a 140-bit wide down-
shifter to implement make odd(n).

Since the down-shift operation for make odd can
be serialized, we can shrink the logic scale of unit A
in exchange for some additional clock cycles. We ex-
amined the various designs (4, 8, 16, 32, 64, 128, and
140-bit wide), and found that the 8-bit version of unit
A shows the best AT product. The design CP2/S8 is
the modified version of CP2, where the unit A is 8-bit
wide. The block diagram is exactly the same as CP2

Table 1. Design summary.
Design name Logic scale Max. freq. Clock cycles Exec. time AT product

(LE) (MHz) (cycle) (sec.) (LE×sec.)

Naive 1489 62.75 14104634 2.248 × 10−1 334.7
CP2 3287 19.24 3614182 1.878 × 10−1 617.5
CP2/S8 2081 44.11 3614256 8.194 × 10−2 170.5
CP2/S8/A1 1941 47.13 3614256 7.669 × 10−2 148.8
CP2/S8/A1/NMX 1758 49.19 3614256 7.348 × 10−2 129.2

Shifterdirection = 1

Mux

Encoder

2
Mux

Shifterdirection = 0

1

3
Mux

1

2

8

n

sel1

sel2

sel3

1 2
3

A B
C

Mux

sel4

4

cin = 0
cin = 0

D

data_out

maximum

clk

max_tmp

max_result

clk

n

Control

n > data_in

n = data_in

n < data_in

find = 1

comp = 1

next

n(138 to 139) != "00" err = 1

Fig. 2. Block diagram of CP2 and CP2/S8.

(Fig. 2). CP2/S8 requires 0.002% more cycles than
CP2, but operates at 2.3 times higher clock frequency.
CP2/S8 is much smaller and faster than CP2. It also
shows a better AT product than CP2 and Naive.

Although the unit C of CP2/S8 contains two 140-
bit adders, one of them is used to add a small integer
(1, 2, or 8). This adder can be omitted by using the fact
that the up-shifter of unit B makes the lowermost bits
into zeros. The resulting design CP2/S8/A1 contains
only one adder in unit C. In this design, 9n+8 in Eq.(3)
is realized by (8n+7)+n+1, where (8n+7) is the first
operand of the adder, n is the second, and the last +1
is fed as carry-in. This improvement makes the circuit
smaller and faster, as shown in Table 1.

There is still some room for improvement. CP2/S8/A1
includes the multiplexer MUX4 in unit C (Fig. 2). Since
MUX4 is used only when n is even, the function of
MUX4 can be substituted by the adder in unit C, if the
adder is properly controlled. By this improvement, a
140-bit wide bus to MUX4 is also reduced. The result-
ing design, CP2/S8/A1/NMX, is illustrated in Fig. 3.
CP2/S8/A1/NMX is smaller and faster than CP2/S8/A1
as shown in Table 1.

Many other designs, which adopt other LPM li-
braries (lpm mux and lpm add sub), were exam-
ined but declined, because their AT products were worse
than the designs shown in this section. Various adder
configurations (e.g., carry-select adder) were also eval-
uated and declined.

4. EVALUATION RESULTS

The design CP2/S8/A1/NMX was implemented and ver-
ified using an Altera NIOS development board with an

APEX20K FPGA [8] (EP20K200EFC484-2X). As the
purpose of this implementation is the verification of
the design, additional features were also embedded for
debug support. The circuit was estimated to operate
at 18 MHz clock, but a conservative 8.3 MHz clock
(1/4 of 33.3 MHz system clock) was selected to leave
some margin. The execution for 3 ≤ n ≤ 223 took 3.5
seconds as expected, and the hardware cycle counter
displayed exactly the same value as the cycle simu-
lator predicted. All other debug registers showed the
expected values. We checked the results carefully and
concluded that the circuit is fully operational.

A performance evaluation with a Stratix FPGA is
also underway. Since a Stratix can implement multiple-
precision arithmetic more effectively than APEX20K,
it is expected to show better results for the 3x+1 prob-
lem.

For comparison, we measured the execution time
of software implementations for 3 ≤ n ≤ 220. These
codes are written in C language and compiled by gcc-
3.2 with optimization (-O). They are executed on an
Intel Pentium 4 2.53 GHz processor with 1 GB main
memory and FreeBSD 4.6.2. The first program (Basic)
implements 128-bit variables and arithmetics, and only
examines the cases n ≡ 3 (mod 4). We further added
2-bit composite polynomials (CP2) and 4-bit compos-
ite polynomials (CP4) to Basic implementation. The
results are listed in Table 2.

Table 1 and Table 2 show that a single unit of
CP2/S8/A1/NMX of 49 MHz is faster than the soft-
ware Basic+CP2 on 2.53 GHz Pentium 4. Consider-
ing that one EP1S10 FPGA can contain 5 units, an
EP1S10 can be about 6 times faster than Basic+CP2.
If an EP1S80 is used, the performance gain can be 56

Shifterdirection = 1

Mux

Encoder

2

sel1

1

A B

C

Shifterdirection = 0

Mux
1

3

sel2

2

n

(139 dowoto 1) & "0"

(139 downto 3) & "111"

(139 downto 1) & "1" Mux
3

others = ’0’

sel4

Mux
4

0
1

sel3

D

data_out

maximum

clk

max_tmp

max_result

clk

n

Control

n > data_in

n = data_in

n < data_in

find = 1

comp = 1

next

n(138 to 139) != "00" err = 1

Fig. 3. Block diagram of CP2/S8/A1/NMX.

Table 2. Software execution time.
Program Exec. Time (sec.)

Basic 1.05 × 10−1

Basic+CP2 9.52 × 10−2

Basic+CP4 6.66 × 10−2

at maximum. This fact suggests that the custom circuit
on FPGA can be competitive against the software on
an off-the-shelf microprocessor for this problem, if the
algorithm is the same.

However, Table 2 shows that Basic+CP4 is 43%
faster than Basic+CP2. Apparently, the performance of
the software can be improved by applying more tech-
niques. Oliveira e Silva [3] reported that their program
tests an interval of 3.17 × 108 integers each second on
DEC a Alpha 266 MHz machine. This suggests that
their program takes 3.3 milliseconds for 3 ≤ n ≤ 220,
which is 20 times faster than Basic+CP4. Considering
that their program was executed on a 266 MHz Alpha
processor, the performance may be 100 times or more
on a 2.53 GHz Pentium 4. This may offset the per-
formance gain of custom hardware, described in the
previous paragraph.

5. CONCLUSION

After all these discussions, the authors still believe in
this approach because the custom circuit can be further
improved. Not all, but many techniques are applicable
to hardware as well as software. If more cut-off tech-
niques [5] are applied to custom circuit designs, hard-
ware performance would be much improved. More
extensive use of composite polynomials is also worth
considering. The hardware-specific techniques (e.g.,
pipelining) are promising for greater performance. The
use of multiple FPGA chips and multiple FPGA boards
may be sometimes the simplest and the most cost-effective
solution. Further investigation of these items is re-
quired, but it is beyond the scope of this preliminary
study.

In number theory, there are many problems and
conjectures that require numerical verification, includ-

ing the derivatives of the 3x + 1 problem. Reconfig-
urable systems may become powerful new equipment
for these problems.

6. ACKNOWLEDGMENTS

This work was partially supported by a Grant-in-Aid
for Scientific Research from the Japan Society for the
Promotion of Science (JSPS). Support for this work
was also provided by the 21st Century COE Program
“Intelligent Human Sensing” from the Ministry of Ed-
ucation, Culture, Sports, Science and Technology.

7. REFERENCES

[1] R. Guy, Unsolved Problems in Number Theory,
2nd ed. Springer-Verlag, New York, 1994, ch.
E16.

[2] J. Lagarias, “The 3x+1 problem and its generaliza-
tions,” American Math. Monthly, vol. 92, no. 1, pp.
3–23, 1985.

[3] T. Oliveira e Silva, “Maximum excursion and stop-
ping time record-holders for the 3x+1 problem:
Computational results,” Math. Comput., vol. 68,
no. 225, pp. 371–384, 1999.

[4] E. Roosendaal, “On the 3x+1 problem,”
http://personal.computrain.nl/eric/wondrous/.

[5] G. Leavens and M. Vermeulen, “3x+1 search pro-
grams,” Computers Math. Applic., vol. 24, no. 11,
pp. 79–99, 1992.

[6] Altera Corp., Stratix Device Handbook, Jul. 2003,
http://www.altera.com/.

[7] ——, LPM Quick Reference Guide, Dec. 1996,
http://www.altera.com/.

[8] ——, APEX20K Programmable Logic Device
Family, Feb. 2002, http://www.altera.com/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

