© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Digital Object Identifier : 10.1109/ISIE.2006.296082

Converting PLC instruction sequence into logic
circuit: A preliminary study

Shuichi Ichikawa*T, Masanori Akinaka*, Ryo Ikeda*, and Hiroshi Yamamoto*
* Dept. Knowledge-based Information Engineering, Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku, Toyohashi 441-8580, Japan
f Intelligent Sensing System Research Center, Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku, Toyohashi 441-8580, Japan
Email: ichikawa@tutkie.tut.ac.jp

Abstract— By implementing a control program with hard-
wired logic using reconfigurable devices (e.g., FPGA), a flexible
and highly responsive system can be realized. This new system
also contributes to securing intellectual property, while reducing
implementation space and cost. This study outlines a converter
that translates PLC instruction sequence into logic description.
A design framework is also described, which integrates control
logic and peripheral functions on an FPGA chip. A productive
ladder program was examined with Mitsubishi Electric FX2N
PLC and Altera APEX20KE FPGA, and the derived logic designs
were shown to fit into an actual FPGA chip. A straightforward
Sequential design was estimated to be 79 times faster than PLC,
while a performance-oriented Flat design was estimated to be 43
times faster than Sequential design (i.e., 3397 times faster than
PLC).

I. INTRODUCTION

A Programmable Logic Controller (PLC) is a kind of
computer, which has been widely adopted for sequence control
of industrial machinery. Though PLC is flexible and well-
established, the performance of PLC does not always satisfy
the requirements in large and highly responsive systems.
Another problem of PLC is that a PLC program is easy to
duplicate and to analyze. This often results in the leakage of
valuable trade secrets and the rise of clone products.

By implementing a control program with hard-wired logic
using reconfigurable devices (e.g., FPGA), a flexible and
highly responsive system could be realized. Since an FPGA
chip can contain maximally ten million logic gates, a very
large control system could be implemented with a single chip.
This may sometimes lead to downsizing and reduction of
system components. It should be also noted that FPGA is more
secure than PLC in protecting intellectual properties, because
(1) it is more difficult to analyze an FPGA design than to
analyze a PLC program, and (2) some recent FPGA devices
provide design security features (e.g., Altera Stratix-II).

It is evident that there are some drawbacks in adopting
FPGA. For example, circuit generation time is consumed
whenever the control program is updated. Reliability and noise
immunity issues are also practical concerns. The authors never
insist on replacing all conventional PLCs with FPGAs. Rather,
we suggest that FPGA technology might offer a promising
alternative solution for some applications, particularly for
highly responsive systems.

This study presents an experimental converter, which trans-
lates PLC instruction sequence into logic description in
VHDL [1]. It also introduces the implementation of a control
logic library, which includes various components to support
PLC instructions and peripheral devices. A design framework
is then outlined, which integrates control logic and peripheral
functions into an FPGA chip.

II. BACKGROUND AND RELATED STUDIES

There have been some studies on the implementation of
a control program in FPGA. For example, Adamski and
Monteiro [2][3] presented a design methodology that translates
“interpreted Petri net specification” into hardware description
languages. Wegrzyn et al. [4][5] presented a framework that
transforms rule-based descriptions (e.g., interpreted Petri net)
into logic descriptions (e.g., VHDL). Ikeshita et al. [6] pre-
sented a conversion program that translates SFC (Sequen-
tial Function Chart) description into Verilog-HDL for logic
synthesis. All these studies concentrated on techniques to
convert functional-level control programs into logic circuits.
In contrast, this study deals with control programs at the
lowest level: PLC instruction sequence. Although it is more
difficult to analyze, our scheme would be applicable to a wider
area of control programs. Moreover, our technique might be
extendible to the instruction sequence of various embedded
processors.

Miyazawa et al. [7] proposed a method to translate PLC
programs of ladder diagram into VHDL programs. Welch and
Carletta [8] proposed an FPGA architecture, which implements
relay ladder logic directly. Though the ladder diagram is
almost equivalent to a PLC instruction sequence, they only
examined very fundamental logic functions such as AND,
OR, NOT, and flipflop, while providing no detailed discussion
about actual PLC applications. The present study, however,
deals with advanced features of PLC that are required in real-
world applications.

The ladder diagram has been widely accepted to describe
PLC programs. A ladder diagram consists of one or more
rungs, each of which consists of a condition part and a process
part (Fig. 1). Either the condition part or the process part
can be an input/output (a) or an instruction (b). The output
of a rung is activated if the corresponding input condition is

ichikawa
テキストボックス
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Digital Object Identifier : 10.1109/ISIE.2006.296082

X001 X002
Y001
(LD X001 X002
Y001 OR Y001 X001 Y001
ANI X002
ouT Y001
(a) Ladder diagram (b) Instruction sequence (c) Logic circuit
Fig. 2. An example of FX2N PLC program: self-holding logic.
L input
. D
: ('a) | —(output) | X000 BRI ° D2
H -ADD D1|D2 D1
. ; input q> enable
N X000
S .
-’ _Y_} H_j Fig. 3. Another example: arithmetic instruction.
condition process
Fig. 1. Overview of ladder diagram. into the instruction sequence shown in Fig. 2 (b), while this

satisfied; otherwise, the output is deactivated. The instruction
of a rung is executed if its input condition is satisfied. Rungs
are ordered, and interpreted in due order.

A ladder diagram is executed in the following manner:

1) At the beginning of a ladder, all inputs are collected and
stored into the corresponding internal memory elements,
which are read and modified by rungs (Input phase).

2) Rungs are interpreted in due order (Execution phase).

3) When the bottom of a ladder is reached, all output
ports are updated by the corresponding internal memory
values (Output phase).

4) The ladder is then executed all over again from the input
phase.

Repeated execution of the abovementioned cycles is called
cyclic scan, and the period of cyclic scan is called scan time.
By making the scan time shorter, the system becomes more
responsive.

III. TRANSLATION OF PLC PROGRAM TO HARDWARE
DESCRIPTION

A. Translation of a Rung

Figure 2 (a) illustrates a rung of a ladder diagram for
Mitsubishi Electric FX2N PLC [9], which is adopted as an
evaluation platform in the following discussion. A distinct ad-
vantage of FX2N PLC is that its instruction set specifications
are open to the public [10].

FX2N instruction set includes 160 instructions with various
types of operands: e.g., switch X, coil Y, internal relay M, data
register D, constant K, and timer T. In Fig. 2, the switches
X001 and X002 correspond to start switch and stop switch,
respectively. The slash on X002 denotes negative logic. If
X001 is on and X002 is off, the output coil YOOI is turned
on; this results in X001 bypassed, and thus Y001 holds while
X002 is off. If X002 is turned on, Y001 is inactivated. This
logic is called self-holding logic. The rung (a) is translated

control logic can be translated into the corresponding logic
circuit (Fig. 2 (¢)).

Another example is shown in Fig. 3, where the process part
of a rung is an arithmetic instruction. In this case, an ADD
instruction is translated into an adder, whose output is captured
by a register if the corresponding condition is satisfied.

Our experimental converter generates a VHDL source code
from an instruction sequence of FX2N. The supported instruc-
tions include 16 basic programming instructions (out of 27)
and 5 applied instructions (out of 133), which are summa-
rized in Table 1. This list is not long, but includes enough
instructions for the following evaluations. The authors are still
extending the list of supported instructions, basically on a
demand-driven basis to support real-world control programs.

B. Sequential Design

To generate a logic circuit that literally simulates a whole
ladder program, it is straightforward to design a sequential
circuit, which activates one rung for each cycle in due order.
This design is designated by Sequential design in the following
discussion.

Although Sequential design reproduces the exact behavior
of a ladder program, it requires p + 2 cycles for each scan.
Here, p is the the number of rungs of a ladder, and two
additional cycles are required for input phase and output phase
described in Section II. For further reduction of scan time, it
is essential to utilize parallelism in the control program.

C. Levelized Design

It is possible to execute two or more rungs in parallel, as a
superscalar microprocessor does, if dependences among rungs
are properly maintained. Figure 4 (a) shows an example of data
dependence, where the output of the upper rung is referred by
the lower rung. In Fig. 4 (b), the input of the upper rung is
overwritten by the lower rung (anti-dependence). Figure 4 (c)
shows an example of output dependence, or double coiling [9],
where the output of the upper rung is overwritten by the lower

TABLE I
SUPPORTED INSTRUCTIONS.

Category |

Mnemonic

Basic instructions

LD, LDI, AND, ANI, OR, ORI, ANB, ORB, INV, NOP, END, OUT, SET, RST, PLS, PLF

Applied instructions

MOV (DMOV), ADD (DADD), SUB (DSUB), MUL (DMUL), DIV (DDIV)

X001 Y002

X001

|_||—(Y002) |—||—(Y003)—| |—||—(Y001 —

I—Y(ﬁi(Y003)—l

(a) Data dependence

Hﬂ[;oozq

(b) Anti-dependence

|—({)|(£(Y001)—l

(¢) Output dependence
(double coil)

Fig. 4. Three dependences to be considered.

rung. In any of these cases, it is essential to execute the upper
rung before the lower rung to derive the same result as in the
original ladder diagram.

Dispatching each rung to the earliest cycle possible (while
keeping all dependencies), we can reduce the clock cycles
required for each scan. In this study, we simply levelize
rungs according to their dependencies, as in levelized com-
piled code simulation of a logic circuit [11]. The rungs that
have no preceding rungs are labeled by Level;, and the
rungs that are dependent on Level;, Level;, ... are labeled by
Levelyax(i,j,..)+1- We can emulate a ladder by a sequential
circuit, which activates the input phase at C'ycleg, the rungs
of Level; at Cycle;, and the output phase at Cycley 1, where
A is the maximal level of rungs. Thus, the number of cycles
for each scan would be A + 2 in this circuit. This design is
designated by Levelized design in the following discussion.

D. Flat Design

Sequential design activates the circuit of each rung, one
for each cycle, in due order. Levelized design activates the
circuit block of each level, one for each cycle, from upstream
to downstream. This brings up the question of why it is
implemented by a sequential logic circuit at all. It is not
necessary to split the execution phase into cycles, because the
inputs and outputs are updated only at the end of each scan.

In fact, it is possible to implement the execution phase
by a combinatorial logic circuit. Let us examine Levelized
design as an example. The input data of Level; circuit are
fed from Level; (0 < ¢ < j) in Levelized design. When
the process part of a rung at Level; is an output, we can
simply remove the internal memory element of this output,
and feed data downstream by wire. When the process part
is an arithmetic instruction, we have to replace the memory
element by a multiplexer, which feeds data downstream. Since
the instruction might or might not take place depending on
the value of its condition part, a multiplexer is required to
select either the new value (generated at Level;) or the original
value (fed from Level;). The execution phase could thus be
converted into a combinatorial logic circuit.

The input and output phases are also redundant. In Sequen-
tial and Levelized designs, two cycles are consumed for input
and output phases. Since the inputs are always updated just
after the outputs, the input phase and output phase can be
unified to one cycle.!

Taking these two ideas together, each scan could be per-
formed in one cycle. The derived design is designated by Flat
design in the following discussion. Flat design is expected
to be faster than Levelized design for the following reason.
The scan time of Levelized design ¢; is given by t; =
(A + 2) max; §;, where §; is the maximal delay of Stage;
(the circuit of Level;). Assuming that the difference in logic
is negligible, the scan time of Flat design t; is expected to
be shorter than ¢;, because ¢ty < X;0; < Amax;d; <
holds. In many cases, Flat design would be much faster than
Levelized design, because ¢ty < X;0; usually holds. Another
advantage of Flat design is that CAD software is generally
good at optimizing combinatorial logic circuits, compared to
sequential circuits.

E. Resource Restriction

Though scan time is very important, the logic scale of
control circuit is equally important for practical applications.
Particularly in translating a large control program, it is essen-
tial to restrict resource usage. In this section, we discuss the
circuit generation with resource restriction.

In the abovementioned designs, each instruction is translated
into its hardware counterpart, and the consequent circuit con-
tains as many components as instructions. A logic operation
does not cost much, because it is implemented by a bitwise
circuit. Meanwhile, an arithmetic instruction matters very
much, because it requires a 16-bit or 32-bit wide arithmetic
unit. Thus, it is very important to restrict the number of
arithmetic units by sharing them among instructions.

IStrictly speaking, the unification of input phase and output phase may
cause trouble, wherever there exists an external loopback from output to
input. Such design is rather exceptional, and should be avoided to assure
high performance.

TABLE Il

EVALUATION RESULTS OF A PID CONTROLLER PROGRAM.

Arithmetic | Num. of | Max. Freq. | Logic Scale Scan time AT product
Device Design unit states [MHz] [LE] [s] [LE - s]
PLC - - - - - 7.98 x 10~7 —
FPGA | Sequential | dedicated 13 32.33 2459 4.02x 107 | 9.89 x 10~ 1
shared x1 20 29.06 1812 6.88 x 10~7 | 1.25 x 10—3
Levelized | dedicated 8 32.69 2449 245 x 10~ 7 | 6.00 x 10~ *
shared x 1 16 30.10 1744 5.32x 1077 | 9.28 x 104
shared x2 14 31.75 2639 441 x 1077 | 1.16 x 103
shared x3 12 30.63 3403 3.92x 1077 | 1.33 x 1073
Flat dedicated I 20.04 3145 499 x 10~ 8 | 1.57 x 10~ %

In Sequential design, it is very easy to share arithmetic
units, because only one rung is activated in each cycle. It
is enough to generate one arithmetic unit for each kind of
arithmetic operation, if its input is multiplexed and its output
is redirected properly. In the following discussion, this design
is designated by shared arithmetic units. It should be noted that
a shared design might incur a significant amount of hardware
for the input multiplexers and output interconnects in exchange
for reduction of arithmetic units. The original design, which
generates as many arithmetic units as arithmetic instructions,
is designated by dedicated in the following discussion.

In Levelized design, resource limitations of an arithmetic
unit may affect the scheduling of rungs, which can result in
the increase of clock cycles. It is thus necessary to choose
a good resource scheduling algorithm to minimize the scan
time. This problem is a type of multiprocessor scheduling
problem [12][13] which is generally difficult to solve. Though
a simple ASAP scheduling was implemented in this study,
better algorithms should be investigated in future studies.

In our particular implementation of shared arithmetic units,
we allocated one additional cycle to each arithmetic operation
for data transfer. This is an implementation-specific issue, and
generally not essential.

F. Optimization Issues

Though there are many possible optimizations, we left most
of them for future studies, and concentrated on evaluating the
fundamental aspects of this method. The following are some
items for future attention.

The first issue is the optimization of instruction sequence.
In this study, our converter literally translates an instruction
sequence into the corresponding logic description. However, it
is possible to generate a better logic circuit by analyzing and
rewriting the instruction sequence. For example, the sum of
four values a, b, ¢, d can be calculated by either ((a+b)+c)+d
or (a 4+ b) 4+ (¢ + d). Literally converted, the former would
result in a cascade of three adders, while the latter would be
a balanced tree of three adders. Generating a balanced tree of
adders from the former instruction sequence is left for future
studies.

Area-Time trade-off is another important issue. Although
some results are shown in the following evaluation, automatic
exploration of the best trade-off is beyond the scope of this
work.

IV. EVALUATION RESULTS

This section presents some evaluation results of two sample
PLC programs. The evaluation flow is shown by broken lines
in Figure 5. First, the scan time of PLC (H) is estimated from
its instruction sequence (B) according to the execution time
for each instruction [9]. Since the execution time of each
instruction is dependent on the value of the corresponding
condition part, the worst case scan time is estimated in this
evaluation. The PLC instruction sequence is then translated
into the hardware description in VHDL by our translator (C).
This VHDL description is processed by Altera Quartus II 4.0
software to generate an FPGA design for Altera APEX20KE
FPGA [14]. In this study, the target device was set to
EP20K600E with 24320 LE (logic elements). The optimization
options of Quartus II are set to default. The scan time of
FPGA (1) is estimated by the estimated maximum operational
frequency and the number of states of the circuit.

Table II summarizes the evaluation results of a PLC program
which implements a simple PID controller with 32-bit fixed
point arithmetic. The PID controller is classical, but has been
frequently used in many control applications to date. This PLC
program includes 23 instructions, which include 4 add/subtract
instructions and 3 multiply instructions.

FX2N PLC takes 798 usec for each scan of PID code, in
which 508 psec is consumed by END instruction. Since the
END instruction is placed to finish the current scan and to
carry out the process of updating outputs and inputs, 64%
of PLC scan time is consumed to update inputs and outputs.
In contrast, FPGA implementations can perform input/output
phases in one or two cycles, which results in very high
responsiveness.

Sequential (dedicated) design is about 2000 times faster than
FX2N PLC, yet requires only 10% of the LEs of a EP20K600E
device. Levelized (dedicated) design is 1.64 times faster than
Sequential (dedicated) design, although the logic scale is
almost the same. Flat design is 4.9 and 8.1 times faster than
the Levelized (dedicated) and Sequential (dedicated) design,
respectively.

Table II includes the results of Area-Time product (AT
product) of each design, i.e., the product of logic scale and
scan time. Since a smaller AT product means that the circuit
requires a smaller logic scale for the same performance, it is a
popular measure of cost-effectiveness. From AT product, it is

TABLE III

EVALUATION RESULTS OF SAMPLE LADDER PROGRAM.

Arithmetic | Num. of | Max. Freq. | Logic Scale Scan time AT product
Device Design unit states [MHz] [LE] [s] [LE - s]
PLC - - - - - 1.61 x 103 —
FPGA | Sequential | dedicated 74 3.63 9733 204 %1075 [1.99 x 10T
shared x1 101 2.84 4565 3.56 x 107° | 1.63 x 10~1
Levelized | dedicated 12 3.64 9613 330x 10 ° | 317 x 10" 2
shared x 1 33 2.76 4523 1.20 x 1075 | 5.43 x 10~2
shared x2 25 2.93 6616 8.53 x 1076 | 5.64 x 10~2
shared x3 23 2.97 8007 7.74 x 1076 | 6.20 x 10~2
shared x4 21 3.06 9703 6.86 x 1076 | 6.66 x 10~2
Flat dedicated 1 2.11 8887 474x10° 7 | 421 x 103

readily seen that Flat design is 3.8 times more cost-effective
than the Levelized (dedicated) design.

In Table II, “shared xn” designates a design that includes
maximally n arithmetic units for each kind of arithmetic
operation. Though it is possible to set a different limitation
for each operation (e.g., 2 for adder and 1 for multiplier), we
applied the same limit to all kinds of arithmetic operations in
this experiment. Sequential (shared x 1) design achieved 26%
reduction of LEs, while the reduction was 29% in Levelized
(shared x1) design. Levelized (shared x2 and x3) designs
were larger in logic scale and slower in scan time than
dedicated design. As stated in Section III-E, shared designs
require more cycles than dedicated designs for each scan. This
might be one of the reasons why shared designs are slow in
this evaluation.

Table III lists the evaluation results of a sample PLC
program, which was derived from an actual product. This
PLC program includes 165 instructions, which include 6
add/subtract instructions, 12 multiply instructions, and 9 divide
instructions.

Sequential (dedicated) and Levelized (dedicated) designs are
almost the same in maximum operational frequency and logic
scale, while Levelized (dedicated) design is 6.2 times faster
than Sequential (dedicated) design. Flat design is even 7.0
times faster than Levelized (dedicated) design, yet its logic
scale is 7.6% smaller. Compared to PLC, Flat design achieves
3397 times higher performance, using only 37% LEs of an
EP20K600E device.

In this program, the effect of shared arithmetic units was
larger than in the PID controller. Sequential (shared x1)
achieved 53% reduction of LEs, while providing 18% better
AT-product. Levelized (shared x1) design also achieved 53%
reduction of LEs, though its AT-product was 71% less than
Levelized (dedicated) design. Levelized (shared x2 and x3)
were also smaller than Levelized (dedicated) design, although
slower.

V. DESIGN FRAMEWORK

Figure 5 illustrates the framework of tools available to
translate, integrate, and implement the logic circuit of a
control system onto a FPGA. In Fig. 5, double rectangles
designate three tools implemented by the authors. The solid-
line arrows designate the path to generate logic circuit from

control logic, while the dotted-line arrows designate the path
for performance evaluation.

A ladder program is designed with Mitsubishi GX Works
software (step A in Fig. 5), and then translated into an
instruction sequence with GX Converter (B). As described
in Sect. III, our translation tool translates the instruction
sequence into the hardware design described in VHDL (C).
Users may write the top-level design (F) by themselves, or
may prepare the interface description file (E) instead. The top-
level design can be generated from the interface description
by our interface logic generation tool. In this example, the
top-level design includes a library component STPG, which is
a peripheral device of FX2N PLC.

Even if a PLC program could be translated into hardware, it
does not work without peripheral devices. To achieve a higher
level of integration, it is essential to integrate peripheral de-
vices on an FPGA together with the control logic circuit. Thus,
the authors prepared a control logic library, which includes
(1) various components to replace peripheral devices of PLC,
(2) template circuits that correspond to PLC instructions, and
(3) some support functions. In this example, a programmable
pulse generator STPG (D) is extracted from the peripheral
library. Finally, Altera Quartus II 4.0 software processes a
top-level design (F), a control logic (C), and a peripheral
component (D) to generate a bitstream, which is downloaded
onto a target FPGA (G).

It is worth integrating a microprocessor core into the FPGA,
because actual control systems include many parts that are not
necessarily implemented in a logic circuit, e.g., user interface,
network communication, etc. In such a case, most soft real-
time tasks would be handled by a microprocessor, while hard
real-time tasks are translated into a custom circuit, which
might be attached as a peripheral device of a microprocessor.

VI. CONCLUSION

This study outlined a converter that translates PLC instruc-
tion sequence into logic description, with a design framework
that integrates control logic and peripheral functions on an
FPGA chip. Two sample ladder programs were examined and
evaluated for Mitsubishi FX2N PLC and Altera APEX20KE
FPGA. Various logic designs of these ladder programs were
investigated and shown to fit into an off-the-shelf FPGA
chip. The performance advantage over PLC technology was

Pl PLC exgc. time | | ---eeeeeee e H PLC scantime
! calculation tool
GX Works, GX Converter : <—>
A B 5 | _FPGA scan time
D—C LD X0 5 cl] L s
oo | ORI : VHDL program| | --» [[MAIN [|.cs 7\
— | OUT YO translation tool | [— | 7| — __Quartus Il_/
L L 7
Ladder diagram Instruction list VHDL
E X0, X1, ... F MAIN [1] Synthesis
Yoyl |— Inten‘acg logic || — —
jog, sel, .. generation tool s1PG [(2] chm:bgy
v pping
Interface file VHDL 3] Place &
Peripheral library Route
Library -
components l
VHDL VHDL 6(_ Download)
Fig. 5. Design framework.

obvious. In case of a productive ladder program, Sequential
design was estimated to be 79 times faster than PLC, and Flat
design was 43 times faster than Sequential design (i.e., 3397
times faster than PLC).

The authors are currently developing a “perfect layer
winder” in conjunction with Yashima Netsugaku Co., Ltd.,
which is a specialty manufacturer of various fiber winders.
To examine the feasibility of an FPGA control circuit in
an actual control application, we have implemented a simple
experimental winder using an Altera APEX20KE development
board. This experimental winder operated successfully, driving
a stepping motor and a linear slider with no problems. We are
currently constructing a new winder with practical specifica-
tions, and will test our system with the new winder.

The following items are left for future study: (1) exami-
nation of more examples of control programs; (2) translation
tool enhancement to support more control functions; (3) more
performance optimization; and (4) investigation of system
integration with embedded processors.

ACKNOWLEDGMENTS

The authors are grateful to Mr. Katsumi Asakura, the presi-
dent of Yashima Netsugaku Co., Ltd. This work was partially
supported by the Cooperation of Innovative Technology and
Advanced Research in Evolutional Area (CITY AREA) and
the 21st Century COE Program “Intelligent Human Sensing”
from the Ministry of Education, Culture, Sports, Science and
Technology of Japan. Support for this work was also provided
by a Grant-in-Aid for Scientific Research from the Japan
Society for the Promotion of Science (JSPS).

REFERENCES

[11 IEEE standard VHDL language reference manual, 2002, IEEE Std 1076-
2002.

[2] M. A. Adamski and J. L. Monteiro, “PLD implementation of logic
controllers,” in Proc. IEEE Int’l Symp. Industrial Electronics (ISIE’95),
vol. 2, 1995, pp. 706-711.

[3] M. Adamski and J. L. Monteiro, “From interpreted Petri net specification
to reprogrammable logic controller design,” in Proc. IEEE Int’l Symp.
Industrial Electronics (ISIE 2000), vol. 1, 2000, pp. 13-19.

[4] M. Wegrzyn, M. A. Adamski, and J. L. Monteiro, “The application of
reconfigurable logic to controller design,” Control Engineering Practice,
vol. 6, pp. 879-887, 1998.

[5] A. Wegrzyn and M. Wegrzyn, “Petri net-based specification, analysis
and synthesis of logic controllers,” in Proc. IEEE Int’l Symp. Industrial
Electronics (ISIE 2000), vol. 1, 2000, pp. 20-26.

[6] M. Ikeshita, Y. Takeda, H. Murakoshi, N. Funakubo, and I. Miyazawa,
“An application of FPGA to high-speed programmable controller —
development of the conversion program from SFC to Verilog —,” in Proc.
7th IEEE Int’l Conf. Emerging Technologies and Factory Automation
(ETFA’99), vol. 2, 1999, pp. 1386-1390.

[7]1 1. Miyazawa, T. Nagao, M. Fukagawa, Y. Ito, T. Mizuya, and
T. Sekiguchi, “Implementation of ladder diagram for programmable
controller using FPGA,” in Proc. 7th IEEE Int’l Conf. Emerging Tech-
nologies and Factory Automation (ETFA’99), vol. 2, 1999, pp. 1381-
1385.

[8] J. T. Welch and J. Carletta, “A direct mapping FPGA architecture for
industrial process control applications,” in Proc. Int’l Conf. Computer
Design (ICCD2000), 2000, pp. 595-598.

[9] Mitsubishi Electric Corp., Programming Manual II: The FX series
of programmable controller (FX1S/FXIN/FX2N/FXINC/FX2NC), April
2003, JY992D88101 rev. D.

[10] ——, “MELFANS web,” 2004, http://wwwf2.mitsubishielectric.co.jp/
melfansweb/english/index.html.

[11] M. Chiang and R. Palkovic, “LCC simulators speed development of
synchronous hardware,” Computer Design, vol. 25, no. 5, pp. 87-92,
1986.

[12] E. Coffman, Ed., Computer and Job-shop Scheduling Theory.
Wiley & Sons, 1976.

[13] M. J. Gonzalez, “Deterministic processor scheduling,” ACM Computing
Surveys, vol. 9, no. 3, pp. 173-204, 1977.

[14] Altera Corp., APEX 20K Programmable Logic Device Family Data
Sheet, March 2004, DS-APEX20K-5.1.

John

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

