
Data Dependent Circuit Design: A Case Study

Shoji Yamamoto, Shuichi Ichikawa, and Hiroshi Yamamoto

Department of Knowledge-based Information Engineering
Toyohashi University of Technology

1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, JAPAN
{shoji, ichikawa, i8hyama}@ich.tutkie.tut.ac.jp

http://ich.tutkie.tut.ac.jp/en/

Abstract. Data dependent circuits are logic circuits specialized to spe-
cific input data. They are smaller and faster than the original circuits,
although they are not reusable and require circuit generation for each in-
put instance. This study examines data dependent designs for subgraph
isomorphism problems, and shows that a simple algorithm is faster than
an elaborate algorithm. An algorithm that requires many hardware re-
sources consumes an accordingly longer circuit generation time, which
outweighs the performance advantage in execution.

1 Data Dependent Hardware

If any input of a logic circuit turns out to be constant, the circuit can be reduced.
For example, if any inputs of an AND gate turn out to be zero, the output
becomes zero (constant propagation). This reduction can be applied recursively,
consequently reducing the logic scale of the circuit. The derived circuit would
operate at a higher frequency than the original, because the logic depth and
wiring delay would also be reduced by this reduction.

Since the consequent circuit becomes dependent on the input data instance,
such a circuit is called a data dependent circuit in the following discussion. The
obvious drawback of a data dependent approach is that the derived circuit is not
reusable. This naturally means that (1) the circuit must be generated for each
input instance, and (2) reconfigurable devices such as FPGA must be used.

The total execution time T of a data dependent circuit is given by the sum
of the circuit generation time Tgen and the execution time Texec. Tgen consists of
the time for HDL source code generation, logic synthesis, technology mapping,
placement, routing, and FPGA configuration. Tgen depends on the logic scale,
since a larger circuit usually requires accordingly larger generation time. Texec is
the product of cycle count and cycle time. Here, the cycle count depends on the
algorithm, and the cycle time depends on the implementation. Fast algorithms
can make Texec smaller, but they often require more hardware resources and
make Tgen larger. The total execution time T is thus not so obvious without
empirical studies.

ichikawa
S. Yamamoto, S. Ichikawa, H. Yamamoto: "Data Dependent Circuit Design: A Case Study," Proceedings of 13th Int'l Conf. on Field Programmable Logic and Applications (FPL 2003), LNCS 2778, Springer, pp. 1024-1027 (2003). ©Springer-Verlag

2

G γGβGα

Fig. 1. Subgraph Isomorphism

2 A Case Study: Subgraph Isomorphism Problem

Hereafter, we examine a problem called a subgraph isomorphism problem as an
example application. A subgraph isomorphism problem is a simple decision prob-
lem. Given two graphs Gα and Gβ , it is determined whether Gα is isomorphic
to any subgraph of Gβ (Fig. 1). In Fig. 1, Gβ has a subgraph that is isomorphic
to Gα, while Gγ does not.

Ullmann [1] proposed a depth first search algorithm with a smart pruning pro-
cedure (refinement procedure) for subgraph isomorphism problems. He pointed
out that his procedure can be implemented with parallel hardware, but Ichikawa
et al. [2] later revealed that his circuit is too large to handle practical problems
with the state-of-the-art FPGAs. Ichikawa, Udorn, and Konishi [3] proposed a
new algorithm (Konishi’s algorithm), which has a simpler pruning procedure
than Ullmann’s. Konishi’s algorithm is generally slower than Ullmann’s, but it
can be implemented in a much smaller logic circuit than Ullmann’s.

Ichikawa et al. [4] [5] previously suggested that data dependent implemen-
tations of Ullmann’s circuit can be much smaller than the original circuit. The
present study confirms this by showing the evaluation results with a Xilinx
Virtex-II FPGA.

A data dependent Konishi circuit has not yet been investigated. This study
also shows the implementation results of data dependent Konishi circuits, and
compares them with data dependent Ullmann circuits. As the original Konishi
circuit [3] was not suited for data dependent implementation, we designed a
brand-new logic circuit with Konishi’s algorithm in this study. In this design,
the adjacency check circuits are implemented by parallel hardware. Although
this design is an interesting example of a data dependent circuit, we do not have
the space to detail it here.

3 Evaluation

This section describes the evaluation results for data dependent circuits. Each
result in this section is the average of 100 pairs of Gα and Gβ , which are randomly
generated. Let pα and pβ be the number of vertices of Gα and Gβ , respectively.
We only deal with the cases of pα = pβ in this study. We implemented data
dependent circuits for various graph sizes, and measured the execution time on
a XC2V1000 FPGA. Our evaluation environment is summarized in Table 1.

3

Table 1. Evaluation Environment

Item Note

Circuit Athlon XP 1800+, Memory 1GB, Windows2000 SP3
Generation Synopsys FPGA Compiler II (2001.08-FC3.7)

Xilinx ISE 4.2i (Target device: Virtex-II XC2V1000)

FPGA platform Insight MicroBlaze Development Kit (XC2V1000, 24MHz)

Software Celeron 1.2GHz, Memory 512MB, Red Hat Linux 7.2
Implementation Written in C, compiled with gcc-2.95.3

We examined the cases of (edα, edβ) = (0.3, 0.6), where edα and edβ indicate
the edge density of Gα and Gβ , respectively. Edge density ed is defined by the
equation ed = (2 q)/(p (p− 1)), assuming that p is the number of vertices and q
is the number of edges. In other words, ed is the ratio of the number of edges to
that of the perfect graph Kp. It is clear that 0 ≤ ed ≤ 1 holds.

In this study, we examine 4 designs. Ko and Uo designate the original Kon-
ishi circuit and the original Ullmann circuit, respectively. Kd and Ud designate
the data dependent versions of a Konishi circuit and Ullmann circuit for the
above-mentioned input graph set.

Figure 2 (left) displays the average logic scale of Ud and Kd, shown by the
number of slices of Virtex-II FPGA. For the same number of vertices (8 ≤ pα =
pβ ≤ 16), the logic scale of Uo is estimated to be 2.4–3.6 times larger than Ud.
Meanwhile, Ko is 1.7–1.9 times larger than Kd.

Figure 2 (right) displays the average execution time on XC2V1000 FPGA
with a 24 MHz system clock. For comparison, the software implementation of
Ullmann’s algorithm was also evaluated. The evaluation environment is summa-
rized in Table 1. The execution time of software is denoted by S in Fig. 2 (right).
For pα = pβ = 16, Ud and Kd is 63 and 32 times faster than S, respectively.
This performance gain becomes larger in larger graphs.

0
100
200
300
400
500
600
700
800
900

1000

8 9 10 11 12 13 14 15 16

A
re

a
[s

lic
es

]

Number of vertices

Kd
Ud

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

8 9 10 11 12 13 14 15 16

T
im

e
[s

ec
.]

Number of vertices

S
Kd
Ud

Fig. 2. Logic Scale (left) and Execution Time (right)

4

0
50

100
150
200
250
300
350
400
450

8 9 10 11 12 13 14 15 16

T
im

e
[s

ec
.]

Number of vertices

Kd
Ud

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

8 9 10 11 12 13 14 15 16

T
im

e
[s

ec
.]

Number of vertices

S
Kd
Ud

Fig. 3. Circuit Generation Time (left) and Total Execution Time (right)

Figure 3 (left) displays the circuit generation time. It is readily seen that the
circuit generation time of Ud is far larger than that of Kd. This comes from the
difference of logic scale. Figure 3 (right) shows the average total execution time
of Ud and Kd, which is the sum of the circuit generation time and the execution
time. The software execution time (S) is also shown for comparison.

Ud and Kd are faster than the software for pα = pβ > 14, even reckoning
the circuit generation time. When pα = pβ = 16, Kd and Ud are 13.3 and 9.4
times faster than the software, respectively. As is readily seen, this performance
advantage becomes larger when pα and pβ are larger. It is also worth noting that
Kd is faster than Ud after all, because the long circuit generation time of Ud
outweighs its performance advantage over Kd.

Acknowledgment

This work was partially supported by a grant from the Okawa Foundation for
Information and Telecommunications. The custom circuits in this study were
designed with Synopsys CAD tools through the chip fabrication program of
VDEC (the University of Tokyo).

References

1. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)
31–42

2. Ichikawa, S., Saito, H., Udorn, L., Konishi, K.: Evaluation of accelerator designs for
subgraph isomorphism problem. In: Proc. FPL2000. LNCS1896, Springer (2000)
729–738

3. Ichikawa, S., Udorn, L., Konishi, K.: An FPGA-based implementation of sub-
graph isomorphism algorithm. IPSJ Trans. High Performance Computing Systems
41(SIG5) (2000) 39–49 (in Japanese).

4. Ichikawa, S., Yamamoto, S.: Data dependent circuit for subgraph isomorphism
problem. In: Proc. FPL2002. LNCS2438, Springer (2002) 1068–1071

5. Ichikawa, S., Yamamoto, S.: Data dependent circuit for subgraph isomorphism
problem. IEICE Trans. Information and Systems E86-D(5) (2003) 796–802

