
Pseudo-Random Number Generation by Staggered
Sampling of LFSR

Shuichi Ichikawa
Department of Electrical and Electronic Information Engineering

Toyohashi University of Technology
Toyohashi 441-8580, Japan

ichikawa@ieee.org

Abstract—Linear Feedback Shift Register (LFSR) is widely
used as a simple Pseudo-Random Number Generator (PRNG).
In 2009, Gu and Zhang proposed a Leap-ahead LFSR, which
applies the feedback polynomial multiple times to achieve a
larger generation rate. Though a Leap-ahead LFSR applies
the feedback polynomial a fixed number of times, the quality
of randomness could be potentially improved by applying the
feedback polynomial variable times. This study introduces a
Staggered LFSR, where a subordinate LFSR determines the
number of feedback polynomial applications for the main LFSR.
Our evaluation results demonstrate that a Staggered LFSR
exhibits better randomness quality compared to a Leap-ahead
LFSR of the same length. Though the subordinate LFSR requires
an additional cost, the overhead is minimal. The Staggered LFSR,
designed with appropriate parameters, successfully passed both
the Diehard test and the NIST SP 800-22 test.

Index Terms—Random number, Linear Feedback Shift Regis-
ter, randomness test

I. INTRODUCTION

Random number generation is an essential part of many
applications (e.g., simulations). Random numbers are usually
categorized into two kinds: true random numbers (TRN) and
pseudo-random numbers (PRN). TRN is generated by physical
phenomena such as thermal noise and is hence unpredictable.
On the other hand, PRN is numerically generated by deter-
ministic algorithms. This study focuses on PRN generation
methods.

Linear Feedback Shift Register (LFSR) is popular as
a Pseudo-Random Number Generator (PRNG) and widely
adopted in both software and hardware due to its simplicity
and ease of implementation.

LFSR generates only one random bit per cycle, which
may be insufficient for applications requiring a large number
of random numbers. To increase the generation rate, it is
possible to use two or more LFSRs in parallel. However, this
introduces a correlation between the LFSRs, which becomes a
new problem. Additionally, the parallel use of LFSRs requires
more hardware resources.

Gu and Zhang [1] proposed the Leap-ahead LFSR, which
enhances the generation rate of random bits by applying the
feedback polynomial multiple times in each cycle. This con-
cept is similar to loop unrolling [2] in software development.
Lee and Kim [3] introduced a segmented Leap-ahead LFSR
to mitigate the correlation in the output stream of a Leap-
ahead LFSR. They also reported an extended period without

compromising area and performance overhead. Tan et al. [4]
reported that a TL LFSR, which is a PRNG based on the Leap-
ahead LFSR, successfully passed the NIST test of randomness.

This study introduces a new PRNG called Staggered LFSR,
which samples the value of the LFSR at variable periods.
Staggered LFSR is based on the Leap-ahead LFSR concept,
with the distinction that the feedback polynomial is applied a
variable number of times. While preceding studies lacked suf-
ficient results regarding the quality of randomness, this study
quantitatively investigates the relationship between design
parameters and the quality of randomness across a wide variety
of designs. The evaluation results of this work are expected to
provide valuable insights for numerous applications.

II. BACKGROUND

Masaoka, Ichikawa, and Fujieda [5] enhanced an embedded
processor by adding a 128-bit LFSR and utilized it to generate
random number sequences. They achieved this by sampling
the lower-most word (32 bits) at uncertain intervals. This idea
resembles to the Leap-ahead LFSR, but it generates practi-
cally unpredictable random numbers due to its uncertainty of
sampling intervals. Consequently, their method is classified
as a URNG (Unpredictable Random Number Generator) [6]
[7] rather than a PRNG. The entropy source for their URNG
relies on the fluctuations in sampling intervals, which are
generated by external interrupts and the activities of other
processes within the system. Masaoka et al. [5] implemented
their system on an FPGA board and reported successful results
in a randomness test (Diehard test [8]).

Kamogari and Ichikawa [9] extensively discussed the de-
sign parameters of the URNG introduced by Masaoka et al.
[5] through comprehensive simulations. They systematically
investigated the randomness qualities across various combina-
tions of LFSR and sampling intervals, aiming to identify the
URNG specifications that successfully pass randomness tests.

In their study, Kamogari and Ichikawa [9] examined the
randomness quality by introducing various fluctuations into
the sampling intervals. Notably, their results without any fluc-
tuations correspond to the evaluation of the Leap-ahead LFSR.
Hence, the findings presented by Kamogari and Ichikawa [9]
encompass the randomness evaluations of various Leap-ahead
LFSRs.

市川　周一
テキストボックス
This is the accepted version of the following article: Pseudo-Random Number Generation by Staggered Sampling of LFSR, 11th International Symposium on Computing and Networking (CANDAR 2023), pp. 134-140 (11/2023), which has been published in final form at http://www.doi.org/10.1109/CANDAR60563.2023.00025
©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



8 7 6 5 4 3 2 1

XOR gate

Fig. 1. An example of 8-bit LFSR [8,6,5,4] [9]

The URNG proposed by Masaoka et al. [5] relies on a
hardware LFSR and the fluctuations in sampling intervals
caused by external factors. However, it is possible to utilize
alternative entropy sources to introduce fluctuations in the
sampling intervals, enabling the implementation of the URNG
without hardware assistance.

Chiba and Ichikawa [11] suggested using publicly available
weather data from the Internet as an entropy source to imple-
ment the URNG with a software LFSR. Since weather data
originate from natural phenomena, the resulting random num-
bers exhibit practical unpredictability. Chiba and Ichikawa uti-
lized wind direction data from 25 observation points spanning
10 years and reported successful results in passing the NIST
test [10] with the generated random numbers. Furthermore,
Betchaku and Ichikawa [12] demonstrated that the volume
of weather data can be reduced by employing advanced hash
functions and optimizing the data order.

The present study addresses the following questions: Can
artificial data be utilized as an entropy source to introduce
fluctuations? Specifically, can an LFSR be employed to gen-
erate fluctuations in sampling intervals that successfully pass
randomness tests?

When utilizing an LFSR to fluctuate the sampling intervals,
the resulting output data are solely determined by the internal
states of the RNG. Consequently, this RNG is classified as
a PRNG. Specifically, this PRNG, which samples an LFSR
at variable intervals, can be seen as an enhancement of the
Leap-ahead LFSR that samples an LFSR at a fixed interval.
Although this study shares a common aspect with previous
works [1] [3] [4], the enhancement proposed in this study dif-
fers from those in the preceding studies [3] [4]. Furthermore,
our method represents a generalization that encompasses the
Leap-ahead LFSR as a special case.

Another notable advantage of this work is the presentation
of a wide range of randomness quality results for various sets
of design parameters. In contrast, previous studies primarily
focused on evaluating logic scale for hardware implemen-
tation. By providing comprehensive data, this study offers
valuable insights for numerous applications, enhancing its
practical relevance.

III. STAGGERED LFSR

This study presents a new random number generator that
utilizes an LFSR, following the preceding studies stated in
the Section II.

TABLE I
TAP SEQUENCES ADOPTED IN THIS STUDY

Length Tap sequence Source
8 [8, 7, 2, 1]
10 [10, 8, 3, 2]
12 [12, 10, 2, 1] Živković [13]
14 [14, 12, 11, 1]
16 [16, 15, 12, 10]
32 [32, 25, 15, 7]
36 [36, 25, 17, 8]
40 [40, 29, 21, 10] Rajski [14]
44 [44, 31, 22, 11]
48 [48, 38, 26, 13]
64 [64, 45, 31, 14]

n-bit LFSR

FB-polynomial

n-bit LFSR

FB-polynomial

FB-polynomial

�

(b) Leap-ahead LFSR(a) LFSR

Fig. 2. Leap-ahead LFSR

LFSR is represented by the tap sequence, which corresponds
to its feedback polynomial. Figure 1 illustrates an example of
8-bit LFSR, whose tap sequence is [8, 6, 5, 4]. If the feedback
polynomial is chosen to be primitive, the period of n-bit LFSR
becomes 2n − 1. The tap sequences of the LFSRs adopted in
the subsequent discussions are summarized in Table I, based
on the findings of Kamogari and Ichikawa [9].

A standard LFSR (Fig. 2(a)) applies its feedback polynomial
once during each cycle to update its internal state and outputs a
single bit. On the other hand, a Leap-ahead LFSR (Fig. 2(b))
applies its feedback polynomial multiple times during each
cycle, resulting in multiple bits being generated to increase
the output rate [1]. In this study, if the width n ≥ 32, the
lower-most 32 bits are output.

Though a Leap-ahead LFSR applies its feedback polynomial
a fixed number of times within a cycle, the proposed method
(Staggered LFSR) applies it a variable number of times, al-
lowing for possible fluctuations in the number of applications.
The Staggered LFSR is illustrated in Fig.3. It is important
to note that a Staggered LFSR is a natural enhancement of
a Leap-ahead LFSR. As in the Leap-ahead LFSR, the n-bit
Staggered LFSR outputs the lower-most 32 bits when n ≥ 32.

Kamogari and Ichikawa [9] utilized a high-quality PRNG,
known as Mersenne twister [15], to generate the fluctuations in
their simulations. Chiba and Ichikawa [11] employed natural
entropy derived from weather data to determine the fluctua-
tions. The present study investigates the potential for generat-
ing high-quality random numbers using a simpler mechanism
by employing a small LFSR to generate fluctuations.



FB FB

n-bit LFSR

FB-polynomial

FB-polynomial

�

(� stages)

FB�

f-bit 
LFSR

m-bit

Fig. 3. Staggered LFSR

In the following descriptions, k denotes the index of iter-
ation. After the (k − 1)-th output, the feedback polynomial
is applied S(k) times before the k-th output is sampled. The
value of S(k) is determined by the following equations.

S(k) = α(k) + β (1)
α(k) = LFSRf (k) ∧ (2m − 1) (2)

Here, the constant β represents the base interval (or base
period), and α(k) represents the fluctuation of intervals.
LFSRf (k) refers to the value of the f-bit LFSR at the k-
th cycle. The f-bit LFSR is updated simultaneously with the
n-bit LFSR.

Equation 2 signifies that the lower-most m bits of the f-
bit LFSR are utilized as the fluctuation (Fig. 3). When m is
zero, α(k) also becomes 0, leading to S(k) = β (a constant).
Therefore, the case of m = 0 corresponds to the Leap-ahead
LFSR. Consequently, the Staggered LFSR can be seen as a
natural enhancement of the Leap-ahead LFSR.

In a software implementation, the computation time in-
creases proportionally to S(k), as the feedback polynomial is
applied S(k) times. In a hardware implementation, the logic
scale and latency of the circuit increase with S(k). In both
cases, an increase in S(k) has a negative impact. Therefore,
it is crucial to carefully consider the trade-offs between the
quality of randomness and the value of S(k). In this study,
evaluations will be conducted for values of 0 ≤ m ≤ 4 and
1 ≤ β ≤ 64.

It is crucial to consider the period when designing a
PRNG, as a short period can lead to a degradation in the
quality of randomness. Since the period is influenced by the
combination of design parameters, the designer must make
careful selections to avoid a short period.

The period A of a Leap-ahead LFSR can be expressed using
the following equation [1]:

A =
LCM(2n − 1, β)

β
(3)

In the equation, the variable n represents the length of the
LFSR, while the constant β corresponds to the number of

TABLE II
DIEHARD EVALUATION CRITERIA [5]

Decision Condition
PASS 0.005 ≤ p < 0.995

WEAK 0.000001 ≤ p < 0.005, or 0.995 ≤ p < 0.999999
FAIL p < 0.000001, or 0.999999 ≤ p

applications of the feedback polynomial, which can also be in-
terpreted as the degree of unrolling. The function LCM(x, y)
denotes the least common multiple of x and y.

To maximize the period of a Leap-ahead LFSR, two integers
2n − 1 and β have to be relatively prime. In other words, the
designer should select the pair (n, β) in such a way that the
greatest common divisor GCD(2n − 1, β) is minimized.

The period P of the Staggered LFSR can be calculated
using the following formula, where B represents the sum of
fluctuations within a period of f-bit LFSR:

B =
2f−1∑
k=1

S(k) =
2f−1∑
k=1

α(k) +
2f−1∑
k=1

β

= 2f−m · 2
m(2m − 1)

2
+ (2f − 1)β

= 2f−1(2m − 1) + (2f − 1)β (4)

P =
LCM(2n − 1, B)

B
(5)

In the case of the Staggered LFSR, the designer should choose
the parameter set (f,m, n, β) in a manner that minimizes the
greatest common divisor GCD(2n − 1, B).

It is important to note that the period alone does not deter-
mine the randomness of the generated sequence. The quality
of randomness should be evaluated through appropriate testing
of the generated random sequence. Therefore, the designer
should carefully choose the parameter set, as a short period can
potentially result in a degradation of randomness. However,
it is possible for a non-maximum period to be sufficient if
the output data satisfies the required criteria, such as passing
specific randomness tests.

IV. EVALUATION WITH THE DIEHARD TEST

Randomness tests typically require a substantial amount of
data to ensure reliable evaluation. For instance, the Diehard
test [8] recommends a dataset size of approximately 108 bits,
while the NIST test [10] suggests testing 1000 sets of 106 bits
each, resulting in a total of 109 bits.

In this section, the Diehard test [8] is adopted, as in previous
studies [5] [9] [11]. The Diehard test is comparatively less
stringent compared to the NIST test, but it requires less time
for each trial. As a result, it is well-suited for the development
stage where numerous trials are necessary.

A. Interpretation

The Diehard test comprises 18 individual tests, each gener-
ating 1 to 100 p-values (313 p-values in total). The interpre-
tation of the test results is not standardized and is left to the



0
2
4
6
8

10
12
14
16
18

1 9 17 25 33 41 49 57

#t
es

ts

Base Period (�)
PASS WEAK FAIL

Fig. 4. Diehard test results of the 32-bit Leap-ahead LFSRs.

discretion of each user. In this study, the evaluation criteria
adopted in Masaoka et al. [5] are adopted.

The interpretation of each p-value is based on the assump-
tion that the p-values should be uniformly distributed in the
interval [0, 1). The results of each p-value are interpreted
according to Table II. It is expected that the probability of
observing a FAIL is 2 × 10−6 under the assumption that
the input data is random. Therefore, if the input data is
truly random, the occurrence of FAIL should be practically
nonexistent. Similarly, the expected probability of observing
a WEAK result is 1× 10−2, indicating that there is no cause
for concern if WEAK results are observed in approximately
1% of the p-values.

To summarize the interpretation of the 313 p-values gener-
ated by the Diehard test, the following rules are applied:

• If there are three or more p-values:
– The uniformity of the p-values is assessed using the

Kolmogorov-Smirnov (KS) test.
– The result of the KS test is interpreted according to

the guidelines presented in Table II.
• If there are one or two p-values:

– If any of the p-values are interpreted as FAIL, the
overall decision is FAIL.

– Else if any of the p-values are interpreted as PASS,
the overall decision is PASS.

– Else the overall decision is WEAK.
The quality of randomness is determined based on the

collective results obtained from the 18 individual tests con-
ducted in the Diehard test, following the aforementioned
interpretation rules.

B. Leap-ahead LFSR

Figure 4 provides a visual representation of the Diehard
test results obtained for the 32-bit Leap-ahead LFSR. The
base period β is depicted along the horizontal axis, while the
vertical axis displays the number of tests categorized based on
the decisions of the 18 individual tests.

Despite the improvement in randomness quality as β in-
creases, it should be noted that the 32-bit Leap-ahead LFSR
is unable to pass all individual tests. Specifically, two tests,
namely the Binary Rank (31x31) test and the Binary Rank

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

n = 32 n = 36
n = 40 n = 44
n = 48

Fig. 5. Diehard test results of the Leap-ahead LFSRs.

(32x32) test, consistently failed for all values of β within the
range of 38 ≤ β ≤ 64. These Rank tests require a longer
period than the period of 232 − 1 offered by the 32-bit LFSR,
leading to their failure. Furthermore, the Overlapping Sums
test also failed at β = 56.

To further investigate the effectiveness of Leap-ahead LF-
SRs with lengths beyond n = 32, we focus on the number of
FAILs for simplicity and ease of understanding.

Figure 5 provides a summary of the number of FAILs ob-
served for Leap-ahead LFSRs with various lengths, including
n = 32, 36, 40, 44, and 48. For the case of n = 40, no
FAILs are observed for β ≥ 43. The only FAIL observed
at (n, β) = (40, 42) occurred in the OPERM5 test. It is worth
noting that Brown [16] suggested a bug in the OPERM5
test, and Kamogari and Ichikawa [9] also reported peculiar
FAILs in the OPERM5 test. Following Brown’s advice [16],
this particular FAIL is disregarded as a false positive of the
OPERM5 test.

Based on this decision, the design with n = 40 successfully
passes the Diehard test for β ≥ 40, while the designs with n =
44 and n = 48 pass for β ≥ 32. The fail at (n, β) = (48, 51),
which was caused by OPERM5, is also regarded as a false
positive.

C. 32-bit Staggered LFSR

This section presents the Diehard test results for the 32-bit
Staggered LFSR (n = 32) with different values of f and m.

Figure 6 illustrates the number of FAILs for the Staggered
LFSR with f = 12, 14, 16, where the least significant bit is
used for fluctuations (m = 1). In the graph, the acronym L.A.
designates the results of the 32-bit Leap-ahead LFSR with no
fluctuation.

The 32-bit Leap-ahead LFSR fails to suppress FAILs for
1 ≤ β ≤ 64, as mentioned in Section IV-B. Similarly, the 32-
bit Staggered LFSR with f = 10 also fails for 1 ≤ β ≤ 64.

By increasing the value of f , the 32-bit Staggered LFSR
exhibits significant improvement in its ability to suppress
FAILs. Specifically, no fails occur with f = 12 for β ≥ 62,
f = 14 for β ≥ 42, and f = 16 for β ≥ 38. In comparison to
the 32-bit Leap-ahead LFSR, which fails to pass the Diehard
test, the 32-bit Staggered LFSR demonstrates superior quality
as it successfully passes the Diehard test with f ≥ 12.



0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 12

f = 14 f = 16

Fig. 6. Diehard test results of the 32-bit Staggered LFSR (m = 1).

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 12

f = 14 f = 16

Fig. 7. Diehard test results of the 32-bit Staggered LFSR (m = 2).

Furthermore, Figures 7, 8, and 9 present the Diehard test
results for m = 2, 3, 4, respectively, similar to Figure 6 where
m = 1. It is observed that for m = 2, 3, 4, no fails occur
for large values of β with f = 14 and f = 16. Therefore,
we can conclude that the proposed design has improved the
randomness quality.

For larger values of m, the number of FAILs may appear
smaller for the same β. This should be interpreted as follows:
Let ᾱ denote the average value of α(k). For m = 1, 2, 3, 4,
the corresponding values of ᾱ are 0.5, 1.5, 3.5, 7.5. Since the
horizontal axes of Figures 6 to 9 represent β, the number
of applications of the feedback polynomial at the same β
increases by ᾱ as m increases. This partially explains the
observed appearance of smaller FAILs for larger m values.

It has been observed that when m is large, some tests
fail with a large value of β. For instance, the Binary Rank
(32x32) test fails with (m, f, β) = (4, 14, 61), while other
values of β around 61 do not exhibit any failures. Similarly,
the Overlapping Sums test fails with (m, f, β) = (4, 16, 60),
while other values of β around 60 do not indicate any failures.
Such sporadic failures are not observed when m = 1.

Furthermore, designs with m > 1 result in an increase in
average calculation time in software implementation and also
lead to larger logic scale and latency in hardware implemen-
tation, as illustrated in Figure 3.

Considering all these factors, it is strongly recommended to
utilize the Staggered LFSR with the parameter m = 1. This
choice not only avoids the occurrence of sporadic failures but

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 12

f = 14 f = 16

Fig. 8. Diehard test results of the 32-bit Staggered LFSR (m = 3).

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 12

f = 14 f = 16

Fig. 9. Diehard test results of the 32-bit Staggered LFSR (m = 4).

also helps minimize the negative impact on the design, making
it a practical and efficient option.

D. 36-bit Staggered LFSR

Figures 10 to 13 provide a summary of the number of FAILs
for the 36-bit Staggered LFSRs with different values of f and
m, compared to the performance of the 36-bit Leap-ahead
LFSR (L.A.).

The 36-bit Leap-ahead LFSR fails to pass the Diehard test
within the range of 1 ≤ β ≤ 64. In contrast, the 36-bit
Staggered LFSR, particularly with f = 8 and f = 10, manages
to suppress the number of FAILs significantly. Moreover, for
f = 12 and β ≥ 32, the 36-bit Staggered LFSR successfully
passes the Diehard test for all m values ranging from 1 to 4.

In the case of n = 32, the Staggered LFSR requires f ≥ 14
and β ≥ 42 for stable success in the Diehard test. However,
the 36-bit Staggered LFSR achieves a passing result in the
Diehard test with f ≥ 12 and β ≥ 38.

These observations indicate a tradeoff between the two
parameters n and f in order to achieve success in the Diehard
test. On the other hand, the n-bit Leap-ahead LFSR success-
fully passes the Diehard test with n ≥ 44 and β ≥ 32 without
any fluctuations, which corresponds to f = 0 of the Staggered
LFSR.

V. EVALUATION WITH THE NIST TEST

In this section, the design parameters discussed in Section
IV are examined using the NIST SP 800-22 test [10].



0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 8

f = 10 f = 12

Fig. 10. Diehard test results of the 36-bit Staggered LFSR (m = 1).

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 8

f = 10 f = 12

Fig. 11. Diehard test results of the 36-bit Staggered LFSR (m = 2).

Table III presents the results of the NIST test for n-bit Leap-
ahead LFSRs with different lengths (n = 32, ..., 64). The base
period β is set to 64, as in Figure 5 of the Diehard test.

The “Result” column in the table indicates the overall
test result, classified as either pass or fail, based on the
specifications provided by NIST. In the case of a fail, the
individual tests that failed are listed in parentheses.

Similar to the results obtained from the Diehard test, the
Leap-ahead LFSRs with shorter periods (i.e., smaller n) tend
to fail the NIST test, while those with longer periods (i.e.,
larger n) pass the NIST test. This consistency between two
tests support the validity of our approach.

The design (n, β) = (40, 64) passes the Diehard test (Fig.
5), while it fails NonOverlappingTemplate test in the NIST
test. This observation suggests that designs that are near the
borderline, such as the (40, 64) design, may perform well in
less stringent tests like the Diehard test, but they may not meet
the more rigorous requirements of the NIST test.

Table IV lists the results of the Staggered LFSR for various
combinations of n, f , and m, which are considered to reside
near the borderline.

The design (n, f, β) = (32, 14, 64) fails the NIST test,
though it successfully passes the Diehard test for 1 ≤ m ≤ 4
(Figures 6 to 9). The design (n, f, β) = (32, 16, 64), where
the fluctuation LFSR is 2 bits longer, successfully passes the
NIST test for m = 1, 2, 4 and it also passes the Diehard test
for m = 1, 2, 3, 4. These results are consistent with the fact
that the NIST test is more stringent than the Diehard test.

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 8

f = 10 f = 12

Fig. 12. Diehard test results of the 36-bit Staggered LFSR (m = 3).

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64

#F
A

IL

Base period (�)

L.A. f = 8

f = 10 f = 12

Fig. 13. Diehard test results of the 36-bit Staggered LFSR (m = 4).

The design (n, f, β) = (36, 10, 64) successfully passes the
Diehard test for m = 2, 3, but it fails for m = 1, 4 due to the
Binary Rank (31x31) test. Similarly, it passes the NIST test
for m = 2, 4, but fails for m = 1, 3. Considering the overall
results, the design (36, 10, 64) is not considered qualified due
to a significant number of failures across different design
parameters. However, by increasing the length of f by 2 bits,
the design (n, f, β) = (36, 12, 64) successfully passes the
Diehard test for m = 1, 2, 3, as well as the NIST test for
m = 1, 2, 4.

It is worth noting that designs such as (32, 16, 3) and
(36, 12, 4) exhibit sporadic failures, where some values of m
lead to a fail while others result in a pass. This observed
pattern of sporadic failures agrees with the findings reported
in Section IV-C for large m values in the Diehard test. The
underlying reason or mechanism behind these sporadic failures
has yet to be fully elucidated.

However, this peculiar behavior is not observed in the case
of m = 1 in either the Diehard test or the NIST test. As
mentioned in Section IV-C, large values of m have a negative
impact on the implementation, and now the quality issue
associated with large m values has been added. Therefore,
it is natural to recommend avoiding designs with m ≥ 2.

In summary, this study recommends utilizing the least
significant bit (m = 1) of the f -bit LFSR when designing
a Staggered LFSR, as it offers a combination of good ran-
domness quality and lower implementation cost. For practi-
cal applications, Table IV includes the evaluation results of



TABLE III
NIST TEST RESULTS OF n-BIT LEAP-AHEAD LFSR (β = 64)

n Result
32 fail (Rank)
36 fail (Rank, NonOverlappingTemplate)
40 fail (NonOverlappingTemplate)
44 pass
48 pass
64 pass

TABLE IV
NIST TEST RESULTS OF STAGGERED LFSR (β = 64)

n f m Result
1 fail (Rank, RandomExcursions)

14 2 fail (Rank, LongestRun, NonOverlappingTemplate)
3 fail (Rank)

32 4 fail (Rank)
1 pass

16 2 pass
3 fail (Rank, NonOverlappingTemplate)
4 pass
1 fail (Universal)

10 2 pass
3 fail (Rank)

36 4 pass
1 pass

12 2 pass
3 pass
4 fail (Rank)

4 pass
8 pass

64 12 1 pass
16 pass
20 pass

n = 64,m = 1 for various f .

VI. CONCLUSION

The findings of this study demonstrate that the Staggered
LFSR exhibits superior randomness quality compared to a
Leap-ahead LFSR of the same length, n. However, the study
also identified the requirement for the length, f , of the LFSR
for fluctuations. The results of the Diehard and NIST tests
indicate that n+f ≳ 48 is necessary. Although the requirement
for the Staggered LFSR (48 bits) is slightly larger than the 44-
bit Leap-ahead LFSR, which passes the NIST test, it does not
pose significant issues since the implementation cost of an
LFSR is relatively low.

Based on our results, the design with a small fluctuation
(m = 1, ᾱ = 0.5) provides sufficiently high randomness.
By adopting the design m = 1, the increase in cost for the
Staggered LFSR can be minimized compared to the Leap-
ahead LFSR. Furthermore, our findings reveal that designs
with m > 2 sometimes experience a degradation in ran-
domness quality. Considering these observations, this study
recommends adopting m = 1 for the design of the Staggered
LFSR.

The Staggered LFSR offers a wider range of design options
compared to the Leap-ahead LFSR, providing users with larger
flexibility in choosing the most suitable design for specific
applications. The evaluation results of this study are also

expected to serve as the foundation for designing the URNG
with LFSR [5] [11].

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number 20K11733.

REFERENCES

[1] X.C. Gu, M.X. Zhang, “Uniform Random Number Generator Using
Leap Ahead LFSR Architecture,” Proc. 2009 International Conference
on Computer and Communications Security, Dec. 2009, pp. 150-154.

[2] K.R. Wadleigh, I.L. Crawford, “Software Optimization for High-
Performance Computing,” Prentice Hall, Jan. 2000.

[3] J.H. Lee, S.K. Kim, “Segmented Leap-Ahead LFSR Architecture for
Uniform Random Number Generator,” International Journal of Software
Engineering and Its Applications, vol.7, no.5, pp.233-242, 2013.

[4] Z. Tan, W. Guo, G. Gong, H. Lu, “A New Pseudo-Random Number
Generator Based on the Leap-Ahead LFSR Architecture,” Proc. 2018
IEEE International Conference on Integrated Circuits, Technologies and
Applications (ICTA), pp. 57-58, Nov. 2018.

[5] H. Masaoka, S. Ichikawa, N. Fujieda, “Random Number Generation
from Internal LFSR and Fluctuation of Sampling Interval,” IEEJ Trans.
Industry Applications, vol. 141, no. 2, pp. 86-92, Feb. 2021. (in
Japanese)

[6] A. Suciu, S. Banescu, K. Marton, “Unpredictable random number
generator based on hardware performance counters,” Digital Information
Processing and Communications (ICDIPC 2011), pp.123-137, Springer-
Verlag, Jul. 2011.

[7] K. Marton, A. Zaharia, S. Banescu, A. Suciu, “Randomness Assessment
of an Unpredictable Random Number Generator based on Hardware
Performance Counters,” Romanian Journal of Information Science and
Technology, vol. 20, no. 2, pp. 136-160, 2017.

[8] G. Marsaglia, “Diehard battery of tests of randomness (Archived),”
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/
diehard/

[9] H. Kamogari, S. Ichikawa, “Evaluation of a random number generator
based on an internal linear feedback shift register,” IEEJ Trans. Industry
Applications, vol. 143, no. 2, pp. 87-93, Feb. 2023. (in Japanese)

[10] A. Rukhin et al., “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications,” NIST SP 800-22
(Rev. la), Apr. 2010.

[11] A. Chiba, S. Ichikawa, “Evaluation of Random Number Generator
Utilizing Weather Data and LFSR,” IEEJ Trans. Industry Applications,
vol. 143, no. 2, pp. 80-86, Feb. 2023. (in Japanese)

[12] T. Betchaku, S. Ichikawa, “Improvement of the URNG that utilizes
weather data and LFSR,” The Papers of Technical Meeting on Innovative
Industrial System, IEE Japan, IIS-23-014, Mar. 2023. (in Japanese)

[13] M. Živković, “A table of primitive binary polynomials,” Mathematics of
Computation, vol. 62, no. 205, pp. 385-386, Jan. 1994.

[14] J. Rajski, J. Tyszer, “Primitive Polynomials Over GF(2) of Degree up
to 660 with Uniformly Distributed Coefficients,” Journal of Electronic
Testing, vol. 19, pp. 645–657, 2003.

[15] M. Matsumoto, T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans.
Modeling and Computer Simulation, vol. 8, no. 1, pp. 3–30, Jan. 1998.

[16] R. G. Brown, “Robert G. Brown’s General Tools Page,”
https://webhome.phy.duke.edu/˜rgb/General/dieharder.php (accessed 26
Jun. 2023)




