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Abstract—This paper presents a case for intra-module multiple
clock domain design in FPGAs using a high-radix Montgomery
multiplier. Our design aims at simple hardware description from
algorithm description, avoiding the decrease of clock rate by a
long combinatorial path. According to our evaluation with 1024-
bit modular exponentiation units, the calculation time reduced
by 1.0% on average. The additional logic units for the proposed
design was 2,556 LUTs and 1,043 flip-flops per multiplier at a
maximum.

I. INTRODUCTION

Digital circuits often adopt multiple clock domain de-
signs [3]. It is typically required by interfaces to external
input/output devices (e.g. video signals) driven by different
clocks. The clock frequency of a memory controller can
be multiples of that of a computation circuit to leverage
the high bandwidth of the external memory [2]. It is also
used for reduction of power consumption because of the
reduced number of circuit switching. There, voltage scaling
is sometimes adopted in addition to frequency scaling [5].
More aggressively, in GALS (Globally Asynchronous, Locally
Synchronous) designs [11], each circuit block is driven by a
single clock that can be different from others. These blocks
are connected by an asynchronous interconnect. One of the
goals of multiple clock domain designs is to reduce the effect
of long combinatorial paths. A path between registers with the
longest combinatorial delay is called a critical path. When the
whole circuit is driven by a single clock, a part of the circuit
with only short paths might be slowed down by another part
with long paths. This can be prevented by driving the short-
path part by a faster clock. However, most of such designs
suppose that multiple clocks are only used among modules.
The use of multiple clocks within a module is considered as

not recommended because of the problem of metastability and
the difficulty of timing analysis [3].

In the early steps of computation circuit designs, a simple
hardware description, which writes down its algorithm with
a minimum modification, is useful. In addition to the ease
of verification of itself, it can be used for the verification of
an optimized circuit. It should be noted that the critical path
might not reside in a part to be optimized. In this case, the
effect of the optimization might not be correctly evaluated.
Although it is a classic solution to first improve the part with
the critical path, it is worth considering to leave it untouched
for the present and drive it by a slower clock.

This study examines the use of multiple clocks within a
module in FPGAs using high-radix Montgomery multiplica-
tion [4], [8]. It is often used for fast modular exponentiation,
which is the basis of the RSA public-key cryptosystem [6]. A
number of FPGA implementations of high-radix Montgomery
multipliers have been proposed [1], [7], [9], [10]. Rather than
such optimized circuits, we use a simple circuit written down
from the algorithm. A timing problem between clocks is solved
by generating phase-aligned clocks by a DCM (Digital Clock
Manager) module of FPGA [3]. We evaluate the amount of
hardware and the computation time of 1024-bit modular expo-
nentiation circuits using the designed Montgomery multipliers.

II. HIGH-RADIX MONTGOMERY MULTIPLICATION

A. Brief Description of Algorithm

Montgomery multiplication [4] is an algorithm to efficiently
compute modular multiplication. Its basic strategy is to trans-
form a modulo operation by an odd number p to a division
and a modulo by 2n, which are easily performed by bit shift



1: C ← 0
2: for i = 0 to m− 1 do
3: z ← 0
4: ti ← (c0 + aib0)q mod 2r

5: for j = 0 to m− 1 do
6: S ← cj + aibj + tipj + z
7: if j ̸= 0 then
8: cj−1 ← S mod 2r

9: end if
10: z ← S/2r

11: end for
12: cm−1 ← z
13: end for
14: if C > p then
15: C ← C − p
16: end if

Fig. 1. Algorithm of high-radix Montgomery multiplication [8], where the
output C is calculated by C = MM(A,B, p, q) = AB2−n mod p.

1: Z ← MM(1, 22n, p, q)
2: Y ← MM(X, 22n, p, q)
3: for i = k − 1 downto 0 do
4: Z ← MM(Z,Z, p, q)
5: if ei = 1 then
6: Z ← MM(Z, Y, p, q)
7: end if
8: end for
9: Z ← MM(Z, 1, p, q)

Fig. 2. Algorithm of left-to-right binary method with Montgomery multipli-
cation to compute Z = XE mod p.

and mask operations. It calculates C = AB2−n mod p, where
0 ≤ A,B < p < 2n is met. To be divisible by 2n, a
multiple of p, or Tp, is added to AB. Such T is calculated by
T = ABq mod 2n, using q that meets pq ≡ −1 (mod 2n).
As a result, the Montgomery multiplication actually calculates
C = (AB + Tp)2−n mod p. Since both AB and Tp is
smaller than 2np, the above modulo operation can be done
by performing a subtraction of p once or zero times.

In actual computation circuits, algorithms where an n-bit in-
teger is divided into m words of r-bit integer are usually used.
They are called high-radix Montgomery multiplication with a
radix of 2r. Figure 1 shows one of the high-radix Montgomery
multiplication algorithms proposed by Satoh and Takano [8].
In this paper, we define it as a function MM(A,B, p, q). There,
words of A are represented by Am−1, Am−2, ..., and A0 and
q is redefined as q = −p−1 mod 2r.

1: pw ← MM(1, 22n, p, q)
2: Z ← MM(X, 22n, p, q)
3: for i = 0 to k − 1 do
4: pwnew ← MM(pw,Z, p, q)
5: Z ← MM(Z,Z, p, q)
6: if ei = 1 then
7: pw ← pwnew

8: end if
9: end for

10: Z ← MM(pw, 1, p, q)

Fig. 3. Algorithm of right-to-left binary method with Montgomery multipli-
cation.
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Fig. 4. Dataflow of the calculation of ti and S.

The Montgomery multiplication is applied to modular ex-
ponentiation by being combined with a binary method. Fig-
ures 2 and 3 describe algorithms where the Montgomery
multiplication is combined with left-to-right and right-to-left
binary methods, respectively. The i-th bit of exponent E
is represented by ei in the figures. When the Montgomery
multiplication is applied to general modular multiplication,
proper pre- and post-processes are required. They are mul-
tiplication and division by 2n modulo p, which are the same
as the Montgomery multiplication by 22n and 1, respectively.
The right-to-left binary method is suitable for fast processing
because two Montgomery multiplications (Lines 4 and 5) can
be performed in parallel, while it requires larger amount of
hardware.

B. Hardware Implementations

There are a number of FPGA implementations of high-
radix Montgomery multiplication algorithms. Blum and Paar
[1] selected a radix of 24 that fitted to LUT implementation
and proposed a systolic array architecture for efficient com-
putation. Song et al. [9] proposed an architecture with only
one RAM block and one DSP block for minimum circuit
area and high operating frequency. Suzuki and Matsumoto
[10] optimized DSP blocks of a Xilinx FPGA for high-
radix Montgomery multiplication by finely controlling the
operations of the DSPs. The radix of the both implementations
was set to 217 by considering the input bit width of DSPs. San
and At [7] applied the Karatsuba method to multiplication
for the further reduction of the number of operations. They
selected radices of 216, 232, and 264. Since we implement
circuits simply described from the algorithm, we do not intend
to compare our circuits with these optimized circuits. Although
the idea of this study can be applied to more complicated
circuits, it is left as a future work.

III. DESIGN AND IMPLEMENTATION

A. Baseline Design

In our designs, the high-radix Montgomery multiplication
algorithm shown in Fig. 1 is translated into a hardware de-
scription with minimum modification. We focus on arithmetic
operations in Lines 4 and 6 and divide them with a temporary
variable τ as follows:

1: τ ← (aib0 + c0) mod 2r



TABLE I
THE COMBINATORIAL DELAY OF COMPUTING ELEMENTS, ESTIMATED ON

AN ARTIX-7 FPGA.

Computing Elements Delay [ns]
Multiply-add (r = 16) 2.54
Multiply-add (r = 32) 9.20
Multiply-add (r = 64) 13.82
Multiply-add (r = 128) 23.55
Subtraction (n = 1024) 31.77
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Fig. 5. Block diagram of the calculation of C − p (if C > p), which
corresponds to Lines 14–16 of Fig. 1.

2: ti ← τq mod 2r

3: τ ← tipj + cj + z
4: S ← aibj + τ

It is clear that each of these operations can be performed
by an r-bit, 2-input multiplier and a 2r-bit, 3-input adder.
They are combined into a 4-input multiply-add unit, shared by
these operations clock-by-clock. Figure 4 shows the dataflow
of these operations. Thin and thick lines represent r-bit and
2r-bit signals, respectively. The upper r bits are discarded in
the calculation of ti because of the modulo operation.

Although the calculation within the loop are composed of r-
bit or 2r-bit operations, the final comparison and subtraction
are n-bit operations. If they are directly described, they are
likely to include the critical path. Table I summarizes the
combinatorial delay of computing units estimated by our
preliminary evaluation. The evaluation environment is the
same as that shown in Section IV. When n is set to 1024, the
delay of subtraction is clearly longer than that of the multiply-
add unit. To avoid this bottleneck, the subtraction can also be
divided into r-bit words. We define the baseline design as a
design where the subtraction is divided into words.

B. Multiple Clock Domain Design

In this study, we examine another design where the sub-
traction is driven by a slower clock, rather than dividing it
into words. Generally speaking, violation of timing constraints
in multiple clock domain design causes metastability, which
might result in an unpredictable error of the circuit [3]. One
of the solutions in FPGAs is to generate phase-aligned clocks
using a DCM (Digital Clock Manager) block. In this case, the
ratio of clock frequencies should be as simple as they can (or
N :1 if possible). Other solutions are preferred if the ratio is
complicated, such as a double flop technique (using two flip-

flops as a synchronizer) and the use of asynchronous FIFO
based on a RAM block [3].

Figure 5 depicts the block diagram of the multiple clock
domain design to calculate C−p. Note that all the data signals
in this figure are n bits wide as it corresponds to Lines 14–
16 of Fig. 1. Fast and slow clocks are denoted by clkf and
clks, respectively. The point of the design is that the operand
calculated by a circuit of the fast clock has to be copied
to registers driven by the slow clock. This ensures that the
operation starts at the edge of the slow clock. The operation
is performed using the copied values Cs and ps and its result
is written back to Cs. Although the output Cs is also used in
the fast clock domain, it is not problematic when the ratio of
clock frequencies is N :1.

IV. EVALUATION

A. Methodology

In this section, the two designs of a high-radix Montgomery
multiplier shown in Section III are implemented and evaluated
on an FPGA. They are included in modular exponentiation
circuits. In the evaluation, the baseline design described in
Section III-A is defined as Single and the multiple clock
domain design described in Section III-B is defined as Multi.
As binary methods of modular exponentiation, both the left-
to-right (LR) and right-to-left (RL) methods are implemented.
Since a modular exponentiation circuit has thousands of bits
of the input and output ports, it is rarely used alone. An
interface circuit that communicates with external circuits via
16-bit interconnects is also implemented. The bit width of
modular exponentiation is set to 1024, while the radix of
Montgomery multiplication is set to 216, 232, 264, or 2128 (i.e.
r = 16, 32, 64, or 128). Based on the result of a preliminary
evaluation such as Table I, the ratio of frequency of the fast
clock and the slow clock is set to 6:1, 4:1, 3:1, or 2:1,
respectively. The interface circuit is driven by the slow clock
regardless of the design of Montgomery multiplier.

The circuits are synthesized and implemented by Vivado
2017.3 with the default settings. The target FPGA is Xilinx
Artix-7 XC7A200T-2FBG676C. Due to constraints of an ex-
ternal clock and a DCM block, the frequency of the slow clock
is set to a multiple of 25/48(∼ 0.52) MHz. As measures of
the amount of hardware, the number of slices, LUTs, flip-
flops (FFs), and DSPs are evaluated. In addition to the whole
circuits, the number of slices in the modular exponentiation
circuit (without the interface circuit) is also collected. As
measures of operation speed, the estimation of the maximum
operating frequency of the fast clock, the number of cycles of
the fast clock to complete the calculation, and the estimated ex-
ecution time are evaluated. The maximum operating frequency
of the fast clock Fmax is estimated by 1000/(ttarg −WNS)
MHz, where ttarg [ns] is the shortest cycle time of the fast
clock that meets all the timing constraints, and WNS [ns] is the
worst negative slack of the fast clock under those constraints.
The number of cycles is measured by simulation. To estimate
the worst case, the exponent E is set to 2n−1 in the simulation.



The execution time is estimated by dividing the number of
cycles by the maximum frequency.

B. Results

Table II summarizes the evaluation results. The difference
of Multi from Single is shown in parentheses. The absolute
difference is shown in the evaluation of the amount of hard-
ware, while the relative difference is shown in the evaluation
of operation speed.

The operating frequency decreased by 0.8% on average,
which ranged from a 4.4% decrease to a 2.7% increase. It
can be considered within the range of the variation due to
optimization. It did not affect the critical path to drive a part
of the calculation by a slower clock. The number of cycles
required for calculation reduced by 3.2% at a maximum, de-
pending on the size of words r. This is because the proportion
of the subtraction in the high-radix Montgomery multiplication
becomes large when r is large (or the number of division m
is small). As a result, the overall execution time reduced by
1.0% on average. The simplicity of the hardware description
was achieved without degradation of execution time.

The increase of logic elements was, at a maximum, 2,556
LUTs and 1,043 flip-flops with the LR binary method or 3,555
LUTs and 2,023 flip-flops with the RL binary method. Taking
into account the fact that the RL binary method includes
two Montgomery multipliers, the increase per Montgomery
multiplier maximized in the case of the LR binary method. The
increase of slices of the whole circuits varied widely among
them. However, according to the results without the interface
circuits, the increase of slices per Montgomery multiplier can
be estimated as about 600. Additional flip-flops came from
the copy of register value shown in Fig. 5. Since the output
register Cout was also required in the baseline design, the
register for ps contributed to the increase. One of the reasons
for the increase of the LUTs was the increase of the bit width
of the subtractor. However, the amount of increment was too
large to account for due to a single reason. In respect of energy
consumption, the increase with the multiple clock domain
design might be smaller than that of logic elements because
circuits driven by the slow clock became larger. Analyses
on the essential effect of dividing clocks, including energy
consumption, is left for a future work.

V. CONCLUSION

A simple hardware description is useful in the early steps
of computation circuit design. In this paper, we presented a
case study for multiple clock domain design within a module
to achieve simplicity. We designed a high-radix Montgomery
multiplier and included it in modular exponentiation circuits.
According to the evaluation, the overall execution time reduced
by 1.0% on average and the simplicity of the hardware
description was achieved. The increase of logic elements per
Montgomery multiplier was 2,556 LUTs and 1,043 flip-flops at
a maximum. Further analyses on the effect of dividing clocks,
comparison with recent works, and application of the idea of

multiple clocks to more optimized circuits are left for future
studies.

ACKNOWLEDGEMENT

This study was partially supported by JSPS Grants-in-
Aid for Scientific Research (KAKENHI) Grant Number
16K00072.

REFERENCES

[1] T. Blum and C. Paar, “High-Radix Montgomery Modular Exponentia-
tion on Reconfigurable Hardware,” IEEE Transactions on Computers,
vol. 50, no. 7, pp. 759–765, 2001.

[2] G. K. Gultekin and A. Saranli, “An FPGA based high performance
optical flow hardware design for computer vision applications,” Micro-
processors and Microsystems, vol. 37, no. 3, pp. 270–286, 2013.

[3] S. Kilts, Advanced FPGA Design: Architecture, Implementation, and
Optimization. Wiley–IEEE Press, 2007.

[4] P. L. Montgomery, “Modular Multiplication Without Trial Division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[5] J. Oliver et al., “Synchroscalar: A Multiple Clock Domain, Power-
Aware, Tile-Based Embedded Processor,” in Proc. 31st Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2004, pp. 150–161.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[7] I. San and N. At, “Improving the Computational Efficiency of Modular
Operations for Embedded Systems,” Journal of Systems Architecture,
vol. 60, no. 5, pp. 440–451, 2014.

[8] A. Satoh and K. Takano, “A Scalable Dual-Field Elliptic Curve Cryp-
tographic Processor,” IEEE Transactions on Computers, vol. 52, no. 4,
pp. 449–460, 2003.

[9] B. Song, K. Kawakami, K. Nakano, and Y. Ito, “An RSA Encryption
Hardware Algorithm Using a Single DSP Block and a Single Block
RAM on the FPGA,” in Proc. 1st International Conference on Net-
working and Computing (ICNC), 2010, pp. 140–147.

[10] D. Suzuki and T. Matsumoto, “How to Maximize the Potential of FPGA-
Based DSPs for Modular Exponentiation,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. E94-A, no. 1, pp. 211–222, 2011.

[11] P. Teehan, M. Greenstreet, and G. Lemieux, “A Survey and Taxonomy
of GALS Design Styles,” IEEE Design and Test of Computers, vol. 24,
no. 5, pp. 418–428, 2007.



TABLE II
EVALUATION RESULTS.

whole circuit w/o I/F
Binary r Clock Slice LUT FF DSP Slice Fmax [MHz] Cycle Time[ms]

LR 16 Single 3,899 8,231 16,542 2 2,353 138.07 17,193,354 124.53
Multi 4,838 10,754 17,585 2 3,092 135.16 17,084,706 126.41

(+939) (+2,523) (+1,043) (+739) (-2.1%) (-0.6%) (+1.5%)
LR 32 Single 3,932 8,376 16,620 4 2,297 84.52 4,401,352 52.08

Multi 3,923 10,932 17,663 4 2,777 83.43 4,346,004 52.09
(-9) (+2,556) (+1,043) (+480) (-1.3%) (-1.3%) (+0.0%)

LR 64 Single 3,739 9,270 16,782 16 2,362 61.42 1,154,154 18.79
Multi 4,352 11,320 17,821 16 3,063 58.74 1,131,603 19.27

(+613) (+2,050) (+1,039) (+701) (-4.4%) (-2.0%) (+2.5%)
LR 128 Single 4,394 11,066 17,128 64 2,952 42.85 317,752 7.41

Multi 4,816 12,640 18,139 64 3,420 44.01 307,504 6.99
(+422) (+1,574) (+1,011) (+468) (+2.7%) (-3.2%) (-5.8%)

RL 16 Single 5,410 14,037 21,846 4 3,801 131.72 8,605,068 65.33
Multi 6,714 17,051 23,832 4 5,110 132.91 8,550,690 64.34

(+1,304) (+3,014) (+1,986) (+1,309) (+0.9%) (-0.6%) (-1.5%)
RL 32 Single 5,084 14,383 21,989 8 3,684 84.65 2,202,824 26.02

Multi 5,829 17,938 23,972 8 4,838 85.61 2,175,124 25.41
(+745) (+3,555) (+1,983) (+1,154) (+1.1%) (-1.3%) (-2.4%)

RL 64 Single 5,237 15,121 22,275 32 3,825 60.05 577,641 9.62
Multi 7,179 18,184 24,256 32 5,134 60.04 566,355 9.43

(+1,942) (+3,063) (+1,981) (+1,309) (+0.0%) (-2.0%) (-1.9%)
RL 128 Single 5,781 18,186 22,805 128 4,750 42.74 159,032 3.72

Multi 6,801 21,412 24,828 128 5,699 41.48 153,904 3.71
(+1,020) (+3,226) (+2,023) (+949) (-3.0%) (-3.2%) (-0.3%)


