
� �
This is the accepted version of the following article: Naoki Fujieda, Shuichi Ichikawa, Yoshiki Ishigaki, and Tasuku
Tanaka, “Evaluation of the hardwired sequence control system generated by high-level synthesis,” Proc. 2017 IEEE
International Symposium on Industrial Electronics (ISIE 2017) (06/2017), which has been published in final form at
http://dx.doi.org/10.1109/ISIE.2017.8001426.
c⃝2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �

Evaluation of the hardwired sequence control
system generated by high-level synthesis

Naoki Fujieda, Shuichi Ichikawa, Yoshiki Ishigaki, and Tasuku Tanaka
Department of Electrical and Electronic Information Engineering,

Toyohashi University of Technology,
Toyohashi, Aichi, Japan

fujieda@ee.tut.ac.jp (Naoki Fujieda),
ichikawa@ieee.org (Shuichi Ichikawa)

Abstract—This study presents the application of the commer-
cial High Level Synthesis (HLS) to a hardwired control appli-
cation with quantitative comparison to the traditional approach
that uses logic synthesis with HDL. Though the derived circuits
from HLS are comparable to that of logic synthesis, the design
trade-offs in HLS are difficult to control. This study also presents
the design and evaluation of the whole system of hardwired
control with a Xilinx Zynq-7000 FPGA platform. From our
experiments, two performance bottlenecks were identified: the
RAM for memory elements that serializes the read/write accesses,
and data transfer time via the peripheral bus. According to our
results, the sole hardwired control was 10 times faster than the
original software, while the overall performance was 4 to 50
times worse than the original software. The use of flipflops and
dedicated I/O pins are necessary for high-performance systems.

I. INTRODUCTION

Programmable Logic Controller (PLC) is widely adopted for
the sequence control of industrial machinery. Although PLC is
flexible and reliable, there are two problems; i.e., performance
and security. The first problem is that the performance of PLC
does not always satisfy the requirements of large or highly
responsive control systems. The second problem comes from
the fact that PLC software is an easy target to duplicate and
analyze.

As an answer to these problems, there have been studies to
implement PLC software as a hardwired control circuit on a
reconfigurable logic device, e.g. FPGA (Field Programmable
Gate Array). The performance of hardwired logic is generally
higher than PLC software, and the flexibility of control logic
can be sustained by the reconfiguration of an FPGA device.
Hardwired control is also resistant to duplication and analysis,

because the logic circuit is more difficult to target for analysis
and duplication than software.

In early studies, Hardware Description Languages (HDL)
and logic synthesis systems were used to generate a hardwired
control circuit. Then, High Level Synthesis (HLS) systems
appeared and became commercially available to generate a
logic circuit from a popular programming language (e.g. C
language). With HLS systems, designers can specify hardware
functionality at higher level of abstraction to reduce the time
and efforts required for hardware design [14].

On the other hand, HLS tends to be more complex in nature
than logic synthesis. Many techniques and optimizations are
applied to the design, which involves a large numbers of
options and settings. Though the default features of HLS may
yield good results in many cases, it is not always optimal
for a specific application. It might be difficult for users to
control HLS to generate a good hardwired control circuit, and
the derived circuit might be larger or slower than the circuit
generated from HDL with logic synthesis. All these points
should be clarified before adopting HLS for practical projects.

The first purpose of this study is to examine the potential of
commercial HLS for control applications, compared to the tra-
ditional approach that adopts logic synthesis and HDL. Three
sample programs are converted to logic circuits with HLS and
traditional methods, and the derived circuits are quantitatively
evaluated and compared. Though various preceding studies
reported the hardwired control generated by synthesis, HLS,
and specially developed tools, they did not compare different
approaches in a quantitative manner. To the best of the authors’
knowledge, this is the first work that quantitatively discusses



the pros and cons of the HLS approach over the traditional
approach for hardwired control circuits.

Another purpose of this work is to examine the performance
and the resource requirements of the whole system, which
includes the hardwired control circuit as a peripheral device.
Though the preceding studies focused on the hardwired control
circuit itself (e.g., [5]), a practical system consists of many
other parts such as an embedded processor, bus interfaces,
memory modules, etc. The performance of the whole system
might be much different from that of the sole hardwired
control part, because various overheads are involved in the
whole system. The resource requirement of the whole system
should be also examined along with the performance. This
study quantitatively discusses such practical aspects of the
hardwired control.

The rest of this paper is organized as follows. Section II
outlines the background and related studies of this work.
Section III introduces the methods to convert PLC software
into hardware. Section IV describes the overall design of
hardware control system, and Section V presents the evaluation
results. Section VI concludes the paper.

II. RELATED STUDIES

The hardware implementation of control logic has been
studied since the middle of 1990s, along with the rapid
evolution of FPGA technologies. Adamski [1] and Wegrzyn
[15] presented systems that transfer the PLC program in
Petri-net format into HDL. Ikeshita et al. [7] converted PLC
software in SFC into Verilog HDL, while Miyazawa et al. [13]
proposed to convert the ladder diagram to VHDL. These early
studies adopted HDL and logic synthesis to generate the logic
circuit that corresponds to the original PLC software.

Figure 1 illustrates an example of PLC software and the
corresponding VHDL code [5]. First, a rung of ladder diagram
is compiled into the corresponding PLC instructions. The
converter then reads the PLC instructions and converts them
into the corresponding VHDL, rung by rung. The condition
part of the rung is converted into the corresponding conditional
statement, and the output part is converted into the correspond-
ing assignments.

The following studies explored the optimization schemes
for hardwired control. As an example, Ichikawa et al. [5][6]
proposed to convert PLC software into logic circuit for higher
performance and higher security. They converted PLC instruc-
tions to VHDL code, which was then synthesized by using the
commercial logic synthesizer. The performance advantages of
three design options (Sequential Design, Levelized Design,
and Flat Design) were quantitatively evaluated, where the
parallelism in hardwired control was utilized. Du et al. [2]
and Milik [9][8] also discussed the optimization techniques
to generate a high-performance control circuit from a PLC
instruction sequence.

Though the above studies discussed the techniques to utilize
the parallelism in the PLC instruction sequence, many of
these techniques are common and well known in the com-
puter architecture or design automation communities. The

��������

���� ����

��������

��	����


��
�����

�����������	
��	������
�������������	
������������

����

������������
�	
����

	
��

Fig. 1. An example of conversion from PLC program to VHDL [6].

optimization efforts might be drastically reduced by using
HLS, which incorporates such optimization techniques [14].
To utilize recent HLS system, PLC instructions have to be
converted into C language (Figure 2).

Economakos [3][4] translated the STL language of Siemens
S7 PLC into C language, which was then converted to HDL
with Catapult C HLS software. Economakos discussed the
effects of coding styles to the area and the performance in
the FPGA implementations. The use of C-based HLS is par-
ticularly attractive when the user would like to implement the
hardware partially, leaving most of the software executed as
software. Recent HLS systems support hardware/software co-
design, which enables users to examine the trade-offs between
software and hardware. This approach is also expected to
be applicable to C-based PLCs, which have become popular
among PLC users.

Despite the pioneering works by Economakos, it is still
indefinite whether the current HLS system can replace the old
design scheme. If the optimizations of HLS are insufficient
or not suited to hardwired control, the derived circuit might
be slower or larger than that generated by HDL and logic
synthesis. Even if HLS is well established, it might be difficult
to derive the best result, since a commercial CAD system is a
kind of black box. It applies every possible techniques in the
black box, and shows the sole result of trade-offs out of vast
variety of possibilities. It is sometimes difficult to control the
optimization process, and to analyze the factors separately.

This work discusses the pros and cons of an HLS approach
over the traditional approach for hardwired control circuits,
using Xilinx tools and FPGAs.

III. CONVERSION OF PLC PROGRAM

Throughout this study, Mitsubishi MELSEC-Q series
PLC [12] is assumed as the target platform. Mitsubishi GX
Works [11] software with GX Converter [10] is adopted
to generate the instruction list as a text file. The derived
instruction list is specific to MELSEC PLCs, while it well
resembles to the IEC-61131 instruction list. It is thus expected
that the following discussion holds good in IEC-compliant
PLCs.

A. PLC-to-C conversion

A custom-made converter was developed to convert a PLC
instruction sequence into the corresponding code of standard
C language. This converter is designated as the C-converter in
the following discussion.



��������

���� ����

��������

��	����


��
�����

�����������

�		
��
��������

�

�

��������

�����������

�

�������������

�����������

��������

�

	

Fig. 2. An example of conversion from PLC program to C.

C-converter was designed to port a PLC instruction se-
quence to the corresponding embedded software written in C
language. It was actually used in a project, and the derived
C code successfully operated on a real-time OS. It should be
noted that C-converter was designed without any consideration
of hardware design.

C-converter converts each PLC instruction into the corre-
sponding piece of C code. Figure 2 depicts the corresponding
C code and the instruction list. A typical instruction set
architecture (ISA) of PLC, including MELSEC-Q, is modeled
as a stack machine. In Fig. 2, the stack is represented as the
array ACCstack, while the stack top register is represented as
the variable Acc. LD instruction pushes the previous result
onto the stack, and loads its operand to the Acc register. The
next ANI instruction applies AND operation to Acc with the
inverted value of its operand. OUT instruction writes the value
of Acc into the destination operand.

Though the relays (X and Y) are 1-bit wide, they were im-
plemented by using char data-type (8-bit wide) in the current
C-converter. This decision was made mainly for simplicity. If
eight relays are packed into a char variable, the code would
be more complicated and the performance would be degraded
by additional shift and mask operations.

B. C-to-HDL conversion with Vivado HLS

The C code generated by C-converter is converted to HDL
code by Xilinx Vivado HLS [17]. Vivado HLS automatically
produces a micro-architecture that satisfies the desired perfor-
mance and resource goals. For further optimization, users may
designate various directives shown below.

• DATAFLOW directive enables task level pipelining,
which enables the concurrent execution of functions and
loops.

• UNROLL directive unrolls the loop by creating multiple
independent operations instead of a single set of opera-
tions.

• PIPELINE directive enables the concurrent execution of
operations within a loop or a function.

• ALLOCATION directive specifies a limit for the numbers
of operations, cores or functions used.

These directives are described in the loops or functions to be
optimized.

C. PLC-to-HDL conversion

To make a quantitative comparison between a C-based
approach and the HDL-based approach, another converter was

�����������		
����
	����

���������	�

�	

����	

���	�����

��	��

�������

����������

�������	��

����
�	
��	

�����	����

�

�����	��

����

�����

��� !��	�
�

��� !

����	��

�
���"

��� !�#��

��$

����������������������
��

��%

�&

' 

����

��
���


��� !�#��

Fig. 3. Block diagram of the proposed system.

implemented to convert a MELSEC-Q instruction sequence
into Verilog HDL descriptions. This converter was designed
to reproduce the results of HDL-based design by Ichikawa et
al. [5] Particularly, Sequential Design and Levelized Design
are examined in the following sections. Flat Design was not
implemented, because we could not find a way to reproduce its
equivalent by a C-based approach. This converter is denoted
as the HDL-converter in the following discussions.

IV. SYSTEM DESIGN

A. Whole System
Figure 3 is the block diagram of our implementation, which

consists of PLC system part that is the hardware generated by
Vivado HLS from PLC instructions, AXI DMA IP core [16]
that transfers data to/from the PLC system part, APU (Ap-
plication Processor Unit) that executes software, and various
interfaces that connect these parts. The PLC system part and
DMA are controlled by APU via AXI4 Lite bus. Though the
PLC system part is generated for each application, other parts
are common and not affected by the target application.

The flow of operation is as follows. The PLC system part
becomes idle and waits for data after initialization. APU
executes the application software, and sends data to the PLC
system part when it requires hardwired control. After sending
data, APU waits for the finish flag of the PLC system part to
be asserted. The PLC system part then begins processing the
received data, and returns the data to APU via DMA when
finished.

B. PLC System IP
The PLC system part is generated from the C code by

HLS, where the C code includes the code generated by C-
converter and the corresponding data transfer code. Figure 4
illustrates the block diagram of the PLC system part. In Fig. 4,
AXI4-Lite interface, controller, BRAM, and its supplements
are automatically generated by HLS. Since the AXI4-Stream
is 16-bit wide, two char-type data are packed in each transfer.
Though the relay data is represented by using char-type
variables as stated earlier, the hardware actually requires 1-
bit data out of an 8-bit char. Data Converter deals with such
data-type conversion and packing/unpacking.



PLC Co-processor

PLC System AXI4-Stream in AXI4-Stream out

AXI4

-Lite
IRQcontroller

Data

converter

Dual-Port

BRAM
Dual-Port

BRAM
Dual-Port

BRAM

Fig. 4. Block diagram of the PLC System IP generated by HLS.

The flow of operation is summarized as follows. After
initialization, APU sets the Start flag of the PLC system part
via AXI4-Lite. PLC system part becomes idle and waits for
the incoming data. The input data are received from the AXI4-
Stream, processed by the Data Converter, and then written into
BRAM. The PLC system part starts processing when all data
are stored in BRAM. Then, the PLC system part goes back
to idle state after finishing processing and sending back the
results via the AXI4-Stream.

V. EVALUATION

A. Methodology

The whole system, including the PLC Co-processor, was
implemented with Xilinx FPGA to evaluate resource usage and
processing time. The differences between this implementation
and the previous study [5] are summarized as follows. The
data are stored in BRAM, which are accessed by the APU
and PLC Co-processor in this work, while the data were
stored in flipflops (FFs) in the previous study. Multiplication
and division are processed in multiple cycles in this work,
while a single-cycle multiplier and divider were adopted in
the previous study.

When using C-converter, all internals of the PLC system
part are generated from C codes. Meanwhile, for the HDL-
converter, the components of the PLC system part have to
be described in Verilog HDL as individual modules, e.g.
PLC Co-processor, AXI4-Stream interface, BRAM, and other
controllers in Figure 4. In using C-converter, BRAM is auto-
matically scheduled by HLS. On the other hand, when HDL-
converter is used, one port of BRAM is connected to the
AXI4-Stream and the other port is connected to the PLC Co-
processor; each port is scheduled independently.

For the evaluation, Digilent ZedBoard (Rev. D) with Xilinx
Zynq XC7Z020-CLG484 was adopted. Xilinx Vivado, Vivado
HLS, and SDK (ver. 2016.3) were used for development.
All options for synthesis and implementation were set to
default. The clock frequency of PS (Processing System) was
666.7 MHz, while one of three standard clocks (1333, 1067,

1000 MHz) was used for PL (Programmable Logic) with an
appropriate divider setting.

Three PLC applications are implemented and evaluated as
shown below. PID is a PID controller (21 instructions), which
is identical to PID in Ichikawa et al. [5]. YNK is a sample
control program (165 instructions), also used in [5]. Plant is
a part of practical control program (3755 instructions). Since
the previous study reported the effect of resource binding, this
work also investigates the ALLOCATION directive to limit
the number of resources.

To examine the resource usage, the numbers of LUT, FF,
DSP, and BRAM are measured. The maximal operational
frequency fmax is also measured, where fmax is calculated
from the worst negative slack (WNS) at the target frequency
ftarg. In the evaluation of the whole system, the average
execution time was measured with the performance counter
of PS (10.42 Mtick/s) by invoking PLC system IP 10000
times. In the evaluation of the sole PLC Co-processor, the
worst execution cycles were estimated by HLS.

B. Results of PLC Co-processor

Table I lists the evaluation results of PLC Co-processor
(stand-alone). Roughly speaking, LUT corresponds to the
combinational gates, FF corresponds to registers, DSP cor-
responds to multipliers, and BRAM corresponds to internal
SRAM.

The uppermost group shows the results derived with C-
converter and HLS. C-converter was designed without any
considerations for hardware design, but the derived C code
was successfully synthesized with the least modification such
as header files. The middle and lowermost groups shows the
results of Sequential Design and Levelized Design, derived
with the HDL-converter and logic synthesis. PID-bind repre-
sents the results of PID with resource constraint, where the
numbers of multiplier and divider are limited to one.

From Table I, it is evident that the resource constraint leads
to the reduction of hardware resources. In Sequential Design
without resource constraint, the number of multiplier is equal
to the number of multiply instructions [5]. The respective
reduction of DSP is 1/3 (PID) and 1/12 (YNK), which is
rational considering the numbers of multiply instructions: 3
(PID) and 12 (YNK). Though DSP of Plant was not reduced
by resource constraint, this behavior was caused by the current
specification of the HDL-converter. Plant includes 17 multiply
instructions, all of which are 16-bit multiplication. Since a 16-
bit multiplier is very small, the current HDL-converter does
not share the multiplier and generates multipliers for each
multiply instructions. (This behavior is reasonable, but might
be regarded as a bug for this experiment.)

The input multiplexers are required for shared multipliers
and dividers, which leads to the increase of LUTs. On the
other hand, LUT will be reduced by sharing dividers, because
dividers are implemented with LUTs. In YNK and Plant,
LUT was actually reduced by sharing dividers, where the
numbers of divide instructions are 9 for YNK and 66 for Plant.
Meanwhile, PID includes no divide instruction, i.e. no dividers



TABLE I
EVALUATION RESULTS OF THE PLC CO-PROCESSOR.

C-converter with Vivado HLS
LUT FF DSP 36kb BRAM ftarg [MHz] WNS [ns] fmax [MHz] #cycle Est.Time [us]

PID 385 719 12 0 318 0.047 322.8 19 0.06
PID-bind 395 501 4 0 350 0.038 354.7 19 0.05

YNK 4,711 4,379 44 0 239 0.089 244.2 56 0.23
YNK-bind 3,668 2,875 4 0 227 0.069 230.6 56 0.24

Plant 39,996 34,992 59 0 170 0.210 176.3 2,104 11.9
Plant-bind 28,747 23,877 4 0 174 0.072 176.2 2,319 13.2

HDL-converter (Sequential Design)
LUT FF DSP 36kb BRAM ftarg [MHz] WNS [ns] fmax [MHz] #cycle Est.Time [us]

PID 575 981 12 0 242 0.165 252.1 55 0.22
PID-bind 676 726 4 0 239 0.014 239.8 55 0.23

YNK 4,215 3,803 48 0.5 206 0.018 206.8 473 2.29
YNK-bind 2,942 1,999 4 0.5 168 0.080 170.3 473 2.78

Plant 28,122 24,357 14 5.0 84 0.088 84.6 2,333 27.6
Plant-bind 23,481 22,258 14 5.0 88 0.145 89.1 2,333 26.2

HDL-converter (Levelized Design)
LUT FF DSP 36kb BRAM ftarg [MHz] WNS [ns] fmax [MHz] #cycle Est.Time [us]

PID 577 983 12 0 242 0.130 249.9 55 0.22
PID-bind 685 725 4 0 245 0.093 250.7 55 0.22

YNK 4,015 3,753 48 0.5 233 0.000 233.0 241 1.03
YNK-bind 2,807 1,954 4 0.5 200 0.036 201.5 357 1.77

Plant 27,140 24,264 14 3.5 114 0.154 116.0 1,986 17.1
Plant-bind 23,607 22,189 14 3.5 126 0.152 128.5 1,986 15.5

TABLE II
COMPARISON OF EXECUTION TIME [US].

Ichikawa et al. [6] HDL-converter of this work
Sequential Levelized S/D ratio Sequential Levelized S/D ratio

PID 0.111 0.0793 1.40 0.22 0.22 1.00
PID-bind 0.137 0.102 1.34 0.23 0.22 1.05

YNK 8.74 1.50 5.83 2.29 1.03 2.22
YNK-bind 11.4 2.50 4.56 2.78 1.77 1.57

to be reduced. Thus, the LUT of PID increased by resource
constraint for the input multiplexers of multipliers, in exchange
for the reduction of DSP.

Table II summarizes the execution times of PID and YNK
for Sequential and Levelized designs with/without resource
constraint. It should be noted that FPGA platforms used are
different between this work (Xilinx Zynq-7000) and previous
work (Altera Stratix-II), and that the absolute values should
not be compared. The ratio of Sequential to Levelized (S/D
ratio) is considered to represent the degree of parallelism in
the application, which should be comparable in these two
studies. However, Table II suggests that the S/D ratio of this
study is lower than the previous results. It is caused by the
difference of the memory elements. As stated in Section V-A,
the memory elements of PLC program are implemented by
using BRAM in this study, while the previous study assumed
flipflops. Though flipflops can be used physically in paral-
lel, the accesses to BRAM are serialized. This substantially
reduces the parallelism in Levelized Design of this work.
Considering this difference, it is regarded that HDL-converter
of this work reasonably reproduced the previous results.

For all three applications, the new scheme (C-converter +
HLS) generated faster circuits than the old scheme (HDL-
converter + synthesis). These results confirmed that the recent
HLS can generate the hardwired control circuit of the reason-
able performance from C code. As for resource requirement,
the new scheme yields comparable results to the old scheme,
though the inclinations are different. In PID, the new scheme
is better and yields a smaller and faster circuit. In YNK
and Plant, the new scheme tends to consume larger resources
with larger performance. With HDL-converter, BRAMs were
inferred, which leads to the reduction of LUT and FF with
potential performance bottleneck by long wire delays.

In short, the resource requirements of the two schemes are
regarded comparable. The new scheme yielded a performance-
oriented circuit, while the old scheme yielded a cost-oriented
circuit. This is a result of trade-off, and HLS may generate
a smaller circuit if the resource constraints are severe. This
aspect might be observed in the next section, which presents
the evaluation results of the whole system.



TABLE III
EVALUATION RESULTS OF THE WHOLE SYSTEM.

C-converter with Vivado HLS
LUT FF DSP 36kb BRAM ftarg [MHz] WNS [ns] fmax [MHz] Time [us]

PID 3,767 4,910 12 5.5 152.4 0.368 161.5 68.9
PID-bind 3,813 4,689 4 5.5 152.4 0.160 156.2 68.9

YNK 5,962 7,125 44 8 125.0 0.318 130.2 146.0
YNK-bind 5,735 5,898 4 8 90.9 0.255 93.1 145.9

Plant 18,510 13,749 44 12 58.0 0.658 60.3 671.9
Plant-bind 15,930 12,050 4 12 76.2 0.093 76.7 673.3

HDL-converter (Sequential Design)
LUT FF DSP 36kb BRAM ftarg [MHz] WNS [ns] fmax [MHz] Time [us]

PID 3,965 5,178 12 11 152.4 0.357 161.1 18.4
PID-bind 4,068 4,922 4 11 152.4 0.027 162.7 18.4

YNK 7,429 8,017 48 11.5 152.4 0.358 161.2 146.0
YNK-bind 6,422 6,214 4 11.5 166.7 0.132 170.4 146.0

Plant 31,318 28,563 14 16.0 82.1 0.094 82.7 547.4
Plant-bind 27,679 26,477 14 16.0 83.3 0.029 84.1 539.4

HDL-converter (Levelized Design)
LUT FF DSP 36kb BRAM ftarg [MHz] WNS [ns] fmax [MHz] Time [us]

PID 3,975 5,180 12 11 166.7 0.126 170.2 18.0
PID-bind 4,084 4,923 4 11 166.7 0.027 167.4 18.0

YNK 7,288 7,969 48 11.5 166.7 0.161 171.3 133.8
YNK-bind 6,308 6,176 4 11.5 166.7 0.051 168.1 134.6

Plant 30,486 28,482 14 14.5 125.0 0.067 126.0 363.5
Plant-bind 26,751 26,403 14 14.5 118.5 0.058 119.3 361.9

C. Results of Whole System

Table III summarizes the evaluation results of the whole
system. In this table, the column Time stands for the average
time to call PLC system IP from APU.

With the old scheme, the resource requirements increased
for the additional units, where the approximate increases of
LUT, FF, and BRAM were 3400, 4200, and 11 respectively.
Max operational frequency (fmax) was reduced to 160–170
MHz, which might be caused by AXI DMA IP core whose
maximum frequency is 180 MHz [16].

With the new scheme, PID becomes slightly smaller but 3.8
times slower than the old scheme. YNK becomes also smaller,
and the execution time is almost the same. In the case of
PID, the new scheme generates 40–50 % smaller circuits with
1.8 times longer execution time than the old scheme. Longer
execution time was a consequence of the low fmax, which
was caused by the long critical path to BRAM in the Data
converter. Instead, the other parts of the system were highly
optimized with the low fmax, resulting in a much smaller
circuit than the old scheme. These results suggest that HLS
tends to generate an area-optimized circuit for a large design,
while generating a performance-oriented circuit for a small
design. This behavior is reasonable, but the users might be
frustrated when they would like to make a different choice
intentionally.

The overhead to call PLC system IP is 1.1 to 3.8 times
larger in the new scheme. From Tables I and III, it is clear
that more than 95% of the execution time in Table III is the
calling overhead, which is mostly DMA transfer via AXI. If

the C codes of PID, YNK, and Plant are executed on PS, their
execution times are 1.3, 5.2, and 165.7 [us], respectively.

In short, the PLC system IP itself is approximately 10 times
faster than PS, while the performance of the whole system is
4 to 50 times lower than PS. The performance advantage of
hardwired logic was totally offset by the bus transfer overhead
in this case. To avoid such a situation, the hardwired logic
should be more autonomous. The data transfer via peripheral
bus should be reduced, and the hardwired control should have
the dedicated I/O pins for control applications.

VI. CONCLUSION

This work examined the potential of commercial HLS for
hardwired control applications. Compared to the old scheme
with HDL and logic synthesis, the new scheme with C
and HLS generated almost comparable circuits considering
area/performance trade-off. Although the automatic trade-off
in the new scheme works reasonably, users may be frustrated
or bewildered to control HLS to generate an intended circuit
significantly different from the default of HLS.

This work also constructed the whole system that includes
the hardwired control circuit as a peripheral device. In the eval-
uations, we found two performance bottlenecks. The first was
the memory module (BRAM), which serialized the read/write
accesses. The second was the data transfer via peripheral bus.
For high-performance control circuits, flipflops are required
instead of RAM, and the dedicated I/O pins are necessary.

The authors are going to apply the presented system to
protect the intellectual property and the security of control
systems. In this case, the performance overhead is not a serious



problem. Instead, some methods to increase the complexity of
analysis will be required.

ACKNOWLEDGEMENT

This study was partially supported by JSPS Grants-in-Aid
for Scientific Research (KAKENHI), Grant Number 26870278
and 16K00072.

REFERENCES

[1] M. A. Adamski and J. L. Monteiro, “PLD implementation of logic
controllers,” in Proc. IEEE Int’l Symp. Industrial Electronics (ISIE’95),
vol. 2, 1995, pp. 706–711.

[2] D. Du, X. Xu, and K. Yamazaki, “A study on the generation of silicon-
based hardware PLC by means of the direct conversion of the ladder
diagram to circuit design language,” International Journal of Advanced
Manufacturing Technology, vol. 49, no. 5, pp. 615–626, 2010.

[3] C. Economakos and G. Economakos, “C-based PLC to FPGA translation
and implementation: The effects of coding styles,” in Proc. 16th Int’l
Conf. System Theory, Control and Computing, 2012, pp. 1–6.

[4] ——, “Efficient High-Level Coding in a PLC to FPGA Translation
and Implementation Flow,” Innovations and Advances in Computing,
Informatics, Systems Sciences, Networking and Engineering, pp. 269–
276, 2015.

[5] S. Ichikawa et al., “Converting plc instruction sequence into logic
circuit: A preliminary study,” in Proc. 2006 IEEE Int’l Symp. Industrial
Electronics (ISIE 2006), vol. 4, 2006, pp. 2930–2935.

[6] ——, “An FPGA implementation of hard-wired sequence control system
based on PLC software,” IEEJ Transactions on Electrical and Electronic
Engineering, vol. 6, no. 4, pp. 367–375, 2011.

[7] M. Ikeshita et al., “An application of FPGA to high-speed programmable
controller – development of the conversion program from SFC to Verilog
–,” in Proc. 7th IEEE Int’l Conf. Emerging Technologies and Factory
Automation (ETFA’99), vol. 2, 1999, pp. 1386–1390.

[8] A. Milik, “On Hardware Synthesis and Implementation of PLC Pro-
grams in FPGAs,” Microprocess. Microsyst., vol. 44, no. C, pp. 2–16,
Jul. 2016.

[9] A. Milik and E. Hrynkiewicz, “Synthesis and Implementation of Recon-
figurable PLC on FPGA Platform,” International Journal of Electronics
and Telecommunications, vol. 58, no. 1, pp. 85–94, 2012.

[10] Mitsubishi Electric Corp., GX Converter Version 1 Operating Manual,
2010, technical Manual IB(NA)-0800004-J.

[11] ——, GX Works2 Version 1 Operating Manual (Common), 2016, tech-
nical Manual SH(NA)-080779ENG-AD.

[12] ——, MELSEC-Q/L Programming Manual (Common Instruction), 2017,
technical Manual SH(NA)-080809ENG-T.

[13] I. Miyazawa et al., “Implementation of ladder diagram for programmable
controller using FPGA,” in Proc. 7th IEEE Int’l Conf. Emerging Tech-
nologies and Factory Automation (ETFA’99), vol. 2, 1999, pp. 1381–
1385.

[14] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 10, pp. 1591–1604, 2016.

[15] M. Wegrzyn et al., “The application of reconfigurable logic to controller
design,” Control Engineering Practice, vol. 6, pp. 879–887, 1998.

[16] Xilinx, LogiCORE IP AXI DMA v7.1, Oct. 2016, PG021.
[17] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis, Nov.

2016, UG902 (v2016.4).


