
This is the accepted manuscript of the following article: Naoki Fujieda, Tasuku
Tanaka, and Shuichi Ichikawa, “Design and Implementation of Instruction In-
direction for Embedded Software Obfuscation,” Microprocessors and Microsys-
tems, Vol. 45, Part A, pp. 115-128 (08/2016), which has been published in final
form at http://dx.doi.org/10.1016/j.micpro.2016.04.005. c©2016. This
manuscript version is made available under the CC-BY-NC-ND 4.0 license.

Design and Implementation of Instruction Indirection for
Embedded Software Obfuscation

Naoki Fujiedaa,∗, Tasuku Tanakaa, Shuichi Ichikawaa

aDepartment of Electrical and Electronic Information Engineering,
Toyohashi University of Technology,

1-1 Hibarigaoka Tempakucho, Toyohashi, Aichi, 441-8580, Japan

Abstract

Instruction Register File (IRF) was originally proposed to reduce the power consumption
of a microprocessor by providing the indirect access to frequently executed instructions.
The IRF is also an attractive and cost-effective unit to protect embedded software from
analysis, plagiarism, and falsification. For this purpose, the correspondences between IRF
entries and their original instructions must be concealed. This means the instructions in
the IRF should be carefully selected both to have more instructions be executed through
the IRF and to flatten the distribution of the indices of the IRF.

This paper presents two heuristic algorithms, precision-oriented and time-oriented,
to find sub-optimal assignments to the IRF. According to the evaluation results, the
precision-oriented algorithm obtained the same as or very close to the optimal assignment
of an IRF with 48 or less entries. The time-oriented algorithm found a sub-optimal
assignment of a 1024-entry IRF in 16 milliseconds, whose precision was 0.5% inferior to
the precision-oriented solution at a maximum. The hardware cost of a 1024-entry IRF
on an FPGA was modest: 2 RAM elements and 0.8% increase of the logic elements.

Keywords: embedded system, secure processor, software protection, instruction fetch,
instruction register file

1. Introduction

To protect intellectual property, the defense of software against analysis, plagiarism,
and falsification has become an important issue. For embedded systems, it should be

∗Corresponding author. Tel.: +81-532-44-1276.
Email addresses: fujieda@ee.tut.ac.jp (Naoki Fujieda), ichikawa@ieee.org (Shuichi Ichikawa)

http://dx.doi.org/10.1016/j.micpro.2016.04.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

attained with a minimal overhead because of their strict limitations on resource or per-
formance.

Reverse engineering consists of three steps: acquisition of machine code, disassembly
and decompilation. Disassembly is a conversion of machine language into assembly lan-
guage, while decompilation is a translation of an assembly into a human-readable code
of high level language. Tamper resistance of software is obtained by obstructing at least
either of them. Specifically, there are the following three major ways to protect software:

• encryption of the machine codes to make them meaningless without a hidden key
[1, 2],

• obstruction of disassembly by confusing disassemblers or preventing them from
accessing necessary information about the instructions [3–10], and

• obstruction of decompilation by scrambling the structure of the program [11, 12]

Instruction set randomization (ISR) [3–8] is an approach to protect software by ob-
structing disassembly, where each processor (or group of processors) has a different in-
struction set. Software is protected from analysis or plagiarism by different or additional
instruction coding system that is hidden from attackers. Moreover, diversified instruc-
tion sets are naturally resistant to falsification because a malicious instruction sequence
for one processor (or one group of processors) does not operate correctly on the others.

The use of an Instruction Register File (IRF) [13, 14] is one of the attractive can-
didates of instruction set randomization. The IRF is a small memory that stores the
most common expressions of instructions specified by the compiler. It is referred by an
index in fetched instructions. Though it initially aimed at reducing power consumption
by packing multiple instructions into a single one [13], it also has resistance to tampering
[15]. It is based on the fact that a reference to the IRF is considered as another expres-
sion of the instruction, which is incomprehensible as long as the contents of the IRF are
hidden. However, the contents may be guessed from the occurrence frequency of indices.
Some routines may not be obfuscated enough by the lack of references to the IRF. Such
risks was not evaluated in [15], although the code reduction and the execution time with
the IRF were measured as its side effects.

This paper examines the effectiveness of the IRF against tampering, particularly re-
verse engineering. It is suitable for embedded systems, such as manufacturing machinery,
because of its small overhead on resource and performance. Without protection, valu-
able know-how and trade secrets that their software contains might be easily uncovered
and stolen. Moreover, once their software are analyzed, injection of malicious code by
abusing buggy program or unauthorized modification of software might be also possible.
When the IRF-based ISR is applied to, most of the program code is expressed by indices
of the IRF, which are not understandable without the IRF contents. It can also prevent
malfunctions of systems or serious accidents due to falsified software.

The main topic of this paper is proper selection of the contents of the IRF, including
the quantification of the efficiency of instruction hiding, proposal of selection algorithms,
and their evaluation. This paper also includes an implementation of a large IRF on an
FPGA to show that its hardware cost is comparable to other ISR approaches.

The rest of this paper is organized as follows: Section 2 provides overviews of the
related studies and prerequisites for the IRF on utilizing it for tamper resistance. In

2

Section 3, we introduce a scale of tamper resistance for the IRF contents considering
frequency analysis and show its characteristics. In Section 4, we propose a branch-and-
bound algorithm to find the optimal assignment and evaluate it. Section 5 describes
heuristic algorithms to find a sub-optimal assignment and their evaluation with two
instruction sets. Section 6 presents and evaluates an FPGA implementation of the IRF.
In Section 7, we make some discussions about possible attacks to our method. Finally,
we conclude the paper in Section 8.

2. Background

2.1. Protection against Reverse Engineering and Instruction Set Randomization

Encryption of instruction memory is one of the most typical anti-tamper approaches
for processors, which was used in the Execute Only Memory (XOM) [1] and the AEGIS
architecture [2]. Most of the methods adopt modern ciphers such as AES to decrypt
instruction memory that was encrypted at compile time. Even data memory is often en-
crypted and decrypted on the fly. This approach is useful for applications where security
is the most important concern. Nevertheless, it significantly increases the memory access
latency and the hardware resources, and thus it is unsuitable for cost-sensitive embedded
systems.

Protection of software is also achieved by obstructing at least either of disassembly
or decompilation. As an obstruction of disassemblers, Linn and Debray [9] proposed
a method to disorder disassemblers to generate erroneous assembly codes in IA-32 by
inserting junk bytes that obscure the partitions of instructions. Monden et al. [10] pro-
posed a finite state machine-based approach where the interpretation of an opcode varied
with the value of the internal state machine. Obfuscation methods against decompilers
were structured by Collberg et al. [11]. In particular, control flow obfuscation disturbs
the reconstruction of the control flow of the original program. It is based on opaque
predicates, or conditional codes whose outcomes are actually constant but not easily
deduced, followed by unreachable bogus codes [11, 12].

Instruction set randomization (ISR) may be categorized into obstruction of disassem-
bly, and also be considered as lightweight instruction memory encryption. Compared to
robust but costly modern ciphers, most of them are based on simple substitution ciphers
for lower overhead. Both hardware [5, 7, 8] and software [3, 4, 6] implementations have
been studied. Some methods utilize the characteristics of the target instruction set [5].
Some other methods rely on stream ciphers [4, 8], whose characteristics are closer to
those of memory encryption: higher safety but higher cost.

An important measure of ISR is the hardness to guess the original instructions from
the randomized ones with frequency analysis [16]. Some kinds of instructions might be
easily guessed from statistical properties of the obfuscated binary (e.g. the frequencies
of opcode values). The analysis might be even easier if heuristics are applied. For
example, the reserved fields of specific instructions are always set to zero. To prevent
frequency analysis, it is important for ISR to decrease statistical information of the
original instructions.

2.2. Instruction Register File

Instruction Register File (IRF) [13] is a table of frequently used instructions. Figure
1 illustrates the IRF. It assumes a 32-bit RISC ISA such as MIPS and ARM. It is placed

3

Instruction

Fetch

Instruction

Decode

IMem

or

ICache

PC Inst

IRF

32

5

32 T
o
 D

eco
d
er

32

32

5* 32*

* Two or more instructions can be

retrieved from a single instruction

Figure 1: The Instruction Register File [13] retrieves frequently executed instructions from indices in
specialized instructions.

just before instruction decoder and accessed by indices. If a specialized instruction is
fetched, the corresponding instruction(s) to the index (indices) will be read from the IRF
and sent to the decoder. In this paper, we refer to instructions that reside in the IRF as
IRF instructions.

The IRF has originally been proposed to compress instruction sequences. Since the
bit length of an index of the IRF is much shorter than that of an original instruction,
multiple IRF instructions can be extracted from a specialized one. In the original proposal
[13], both normal and specialized instructions were 32 bits long. Seven bits of specialized
instructions were used for identification and the remaining 25 bits were for indices. Since
the number of the IRF was set to 32, each index required log2 32 = 5 bits. Therefore,
a specialized instruction contained up to five (= 25/5) continuous instructions listed in
the IRF.

2.3. Using IRF for Anti-tampering

In addition to the reduction of code length, the IRF can provide randomization of a
subset of the instructions [15]. It is possible to protect software from analysis by arbi-
trarily shuffling the mapping from indices to IRF instructions. It provides a protection
from plagiarism if the mapping and the corresponding instruction sequence are diversi-
fied for each system. It makes the system robust over falsification by prohibiting IRF
instructions from being executed directly from instruction memory. In comparison with
other ISR methods, the IRF has an advantage of hiding information about operands.

Some ISR methods decrypt instructions when they are read from the main memory
to the cache, which means that they may require a special care so that the decrypted
instructions can not be read out as data. In the other methods, including the IRF-based
ISR, decryption occurs right before instructions are executed. Even if instructions are
read as data, obfuscated instructions will naturally be obtained. Though we assume a

4

single-core processor in this paper, when we assume multicore environment, this strategy
requires the same number of decryption units (i.e. the IRFs) as the number of processor
cores, which might incur a large hardware overhead. This problem can be solved by a
careful design of each unit to be small.

For all these merits, the IRF is not practical without modification mainly because of
the following two shortcomings. First, it might be too small to obfuscate the instruction
sequences that should be hidden. Although it may be a solution to have different map-
pings for each process or routine, it may cause another problem of keeping the mappings
themselves securely. Second, it lacks a consideration for frequency analysis. If the goal
of the IRF is tamper resistance, it might be a bad idea to simply put the most frequent
instructions in it. Unfortunately, the evaluation of these risks was not presented in [15].

A possible approach to remedy the risks is to increase the number of the entries in
the IRF and to use a mapping common to all processes. The number of instructions
executed through the IRF may become large enough to obfuscate important routines.
The frequency analysis will become much more difficult because lower-ranking instruc-
tions have almost the same occurrence probability. It may be even difficult to find which
instructions reside in the IRF. Although we do not assume specific applications for this
approach, it is naturally suitable for embedded systems. Since the distribution of ap-
pearance of instructions highly depends on applications, the IRF will include instructions
more likely to appear when the field of applications or, if possible, the binary code itself
is known before the construction of the read-only IRF mapping.

On utilizing a large IRF, the following concerns should be considered: how to evaluate
the selection of IRF instructions, how to select IRF instructions, and how large the
hardware or performance overhead is. We propose and evaluate a solution in the following
sections.

In this paper, we assume that all processes use the whole of the IRF and they are
treated equally on the selection of IRF instructions. Depending on the selection of
instructions, a large IRF can be used as multiple small IRFs corresponding to processes,
which are similar to the IRF Windows [14]. It can also be possible to give special
weights on some specific applications or parts of the program. Such an application
specific selection for the IRF can be useful in some cases, though it is out of scope of this
paper.

We have presented the preliminary version of this study in CATA-2014 [17]. The
differences of this paper from the preliminary work include:

• a detailed analysis of the entropy of the IRF indices, which corresponds to the
difficulty of frequency analysis (Section 3.3),

• a branch-and-bound algorithm that obtains the optimal assignment of the IRF,
along with its evaluation (Section 4),

• a new time-oriented algorithm with a reuse of calculated value that reduces the
time complexity from O(N3) to O(N logN) (Section 5.2),

• the evaluation of tamper resistance with binaries compiled for an ARM instruction
set (a part of Section 5.5),

• a detailed explanation and evaluation of an FPGA implementation of the IRF
(Section 6), and

5

1 li t0 ,10

2 li t1 ,0

3 addu t1,t1,t0 ; beginning of loop

4 addiu t0 ,t0 ,-1

5 bne t0,zero ,-3 ; branch to 3rd instruction if t0 == 0

6 nop ; end of loop (MIPS has a delay slot)

Figure 2: An example of MIPS assembly to describe the difference between CD(I) and CS(I).

• discussions about comparison with other ISR-based approach and about possible
attacks such as heuristic analysis of the obfuscated codes (Section 7).

3. Scale of Tamper Resistance for the IRF

3.1. Definition

In the selection of IRF instructions, the original IRF proposal [13, 15] considered only
how many instructions are replaced with IRF references. However, as we have explained
in Section 2, the cost of frequency analysis should also be considered, which is quantified
by the flatness of the distribution of IRF indices. We introduced a scale of tamper
resistance for the IRF in the preliminary work [17]. This subsection gives an explanation
of the scale.

By dynamic profiling of typical applications, the number of times dynamically exe-
cuted and the number of times statically appeared for each 32-bit instruction expression,
I, are measured. They are defined as CD(I) and CS(I), respectively. They naturally
differ since each instruction might be executed multiple times. When it is executed n
times, CD is incremented by n, while CS is simply incremented by 1. From them, dy-
namic execution frequency PD(I) and static occurrence probability PS(I) are calculated
as follows:

PD(I) =
CD(I)∑
i∈I CD(i)

, PS(I) =
CS(I)∑
i∈I CS(i)

, (1)

where I designates the set of all the possible expressions of MIPS instructions.
Figure 2 shows an example of MIPS assembly code with a loop, which explains the

difference between two kinds of profiles. The third through sixth instructions constitute
a for loop executed ten times. If the program passes through this piece of code twice,
CD of the first and second instructions will increment by 2 and CD of the third through
sixth instructions will increment by 20, while CS of the all instructions will increment
by 1.

Instead of dynamic profiling, control flow analysis to the binary files can be used
to obtain CS(I). It is usually undesirable that unused parts of the program affect the
decision on obfuscation. Although control flow analysis might estimate more precisely
which part of the program remains unused, the investigation of the profiling methods
suitable for obfuscation is out of focus of this paper.

The frequency of IRF instruction executed, γ(IRF), is defined as the sum of their
dynamic execution frequency:

γ(IRF) =
∑N−1

k=0 PD(IRFk), (2)
6

where IRFi is the IRF instruction assigned to the index i and N is the number of IRF
entries. We formulate it with dynamic frequency PD because most programs have small
sequences of instructions executed repeatedly and they are more suitable parts for being
hidden than others.

The cost of frequency analysis, E(IRF), is represented by the Shannon entropy H of
the IRF indices, normalized by its theoretical limit of logN :

E(IRF) =
H(I)

logN
=
−
∑N−1

k=0 pS(IRFk) log pS(IRFk)

logN
, (3)

where
pS(I) = PS(I)/

∑N−1
k=0 PS(IRFk)1 (4)

When N = 1, we define E(IRF) = 1 (i.e. the distribution of the IRF indices is completely
flat) for convenience. We use PS to measure the evenness of the distribution because
frequency analysis is often made statically with program codes.

Based on these factors, S(IRF) or the scale of the effectiveness of instruction selection
in the sense of tamper resistance is defined as follows:

S(IRF) = γ(IRF)× E(IRF). (5)

It becomes 1 if all of the executed instructions reside in the IRF and all of the indices
appear completely evenly. On the other hand, it becomes 0 if none of the IRF instructions
are executed or only one index of the IRF appears. The definition of S(IRF) means that
the selection should achieve a wide range of obfuscation and a high cost of frequency
analysis at the same time.

In our preliminary study [17], we found that duplication of IRF entries (allowing
multiple entries to be assigned to a single instruction) greatly improved the flatness of
the IRF indices. We assume that indices of a duplicated instruction are equally used in
the applications; that is, when an instruction I is associated with n entries, the static
probability of each entry becomes PS(I)/n. In the aspect of obfuscation with the IRF,
this means the adoption of a homophonic substitution cipher, which is more difficult to
be deciphered than a simple substitution cipher. We make a detailed discussion from
this point of view in Section 7.

3.2. Use of One Kind of Instruction Profile

When only one profile of either CD or CS can be obtained, it might be acceptable to
apply that profile to both of them. In this case, finding the optimal (or a sub-optimal)
assignment of the IRF gets simpler. In particular, if each IRF instruction is assigned to
only one entry, the assignment that maximizes γ(IRF) always has a maximum S(IRF). It
is doubtful that such an assignment is useful in the context of tamper resistance, though
it greatly reduce the computational effort.

1The previous paper [17] made an incorrect explanation of E(IRF). The static probabilities of IRF
instructions PS(I) must have been normalized by their sum.

7

3.3. Analysis of the entropy of the IRF indices

In the calculation of S(IRF), the most time-consuming part is H(I), which contains
N times of logarithmic operations. On searching for a better assignment of the IRF, it
is natural to utilize the result of a neighboring assignment that was already considered.
On building an assignment under the assumption that a part of it is fixed, it is useful
to know the upper bound of H(I). For these reasons, the rest of this section gives an
analysis of H(I), the entropy of the IRF indices.

Let IRF = {I0, I1, ..., IN−1} be an assignment of the IRF whose s =
∑N−1

k=0 PS(Ik) is
already calculated. By substituting Equation 4 into 3, we obtain the following equation:

H(I) = −
N−1∑
k=0

PS(Ik)

s
{logPS(Ik)− log s} = −h

s
+ log s, (6)

where h =
∑N−1

k=0 PS(Ik) logPS(Ik).
When an instruction IA /∈ IRF is added to the IRF, s increases by PS(IA) and h

increases by PS(IA) logPS(IA). This makes the entropy of the indices of the new IRF
be:

H(I ′) = −h+ PS(IA) logPS(IA)

s+ PS(IA)
+ log{s+ PS(IA)} (7)

= {H(I)− log s} · s
sa

+
PS(IA) logPS(IA)

sa
+ log sa, (8)

where sa = s + PS(IA). Similarly, when an instruction IR ∈ IRF is removed from the
IRF, the entropy is:

H(I ′) = {H(I)− log s} · s
sr
− PS(IR) logPS(IR)

sr
+ log sr, (9)

where sr = s− PS(IR).
When the number of entries for an instruction ID ∈ IRF is changed from m to n, s

remains unchanged and h of the new assignment, hd, will be:

hd = h−m · PS(ID)

m
log

PS(ID)

m
+ n · PS(ID)

n
log

PS(ID)

n
= h− PS(ID) · (log n− logm). (10)

Therefore, the entropy of the new IRF indices is:

H(I ′) = H(I) +
PS(ID) · (log n− logm)

s
. (11)

We then consider adding an instruction IA that has a static occurrence probability
of p (i.e. PS(IA) = p). The following equation is obtained from Equation 7:

H(I ′) = −h+ p log p

s+ p
+ log(s+ p). (12)

8

Differentiating Equation 12 with respect to p gives:

d

dp
H(I ′) = −

1
ln 2 + log p

s+ p
+
h+ p log p

(s+ p)2
+

1
ln 2

s+ p

=
h− s log p

(s+ p)2
. (13)

Hence, H(I ′) has a global maximum at p = 2h/s. In this case, the ratio of h to s of the
new assignment ha/sa is the same as that of the original:

ha
sa

=
h+ 2h/s · hs
s+ 2h/s

=
h(s+ 2h/s)

s(s+ 2h/s)
=
h

s
. (14)

This means that keeping on adding instructions with a static probability of 2h/s maxi-
mizes the entropy of the IRF indices. In case that p < 2h/s, the ratio ha/sa satisfies the
following inequalities:

ha
sa

=
h+ p log p

s+ p
>

s log p+ p log p

s+ p
= log p, (15)

ha
sa

=
h+ p log p

s+ p
<

h+ p · hs
s+ p

=
h

s
. (16)

Rearranging them, we obtain the following inequality,

p < 2ha/sa < 2h/s, (17)

which means the new maximum point goes between the previous maximum point and
PS of the added instruction. This fact helps us prove that maximizing γ(IRF) always
has a maximum S(IRF) under the assumption mentioned in Section 3.2.

4. Optimal Selection of IRF Instructions

4.1. Branch-and-bound Algorithm

Since S(IRF) is defined, finding the optimal selection of IRF entries is now formulated
as a combinatorial optimization problem to maximize S(IRF). Though this problem is
specific to the proposed approach, various algorithms for combinatorial optimization
problems can be applied with small modifications. It is generally difficult to compute
the exact solution in a practical time. However, when the size of the problem (i.e. the
number of IRF entries) is small, a branch-and-bound algorithm with a proper pruning
of a search tree might help to give the exact solution.

Let N be the number of IRF entries and {I0, I1, ..., IM−1} be the candidates for IRF
instructions. If the instructions I0, I1, ..., Ik−1 have the respective numbers of assigned
entries n0, n1, ..., nk−1, the subproblem of the selection of IRF entries is to find the
rest of the assignment nk, nk+1, ..., nM−1 that maximize S(IRF) under the condition of

U = N −
∑k−1

i=0 ni =
∑M−1

i=k ni (where U is the number of unassigned entries).
For pruning, we now consider the upper bound of S(IRF). To maximize γ(IRF), we

will select the top U instructions in PD from Ik, Ik+1, ..., IN−1. In respect of E(IRF),
9

1: if U = 0 or k = M then
2: g new ← g
3: s new ← s
4: h new ← h
5: else if s max[k][1] > 2h/s then
6: g new ← g + g max[k][U]
7: s new ← s + U × 2h/s

8: h new ← h + U × 2h/s × h/s
9: else

10: g new ← g + g max[k][U]
11: s new ← s + s max[k][U]
12: h new ← h + h max[k][U]
13: end if
14: return g new × (−h new/s new + log s new)/ logN

Figure 3: Pseudocode for calculating the upper bound of S(IRF).

although we should add instructions with a static probability of 2h/s, it is often that all
of the instructions under consideration have lower probability than 2h/s (i.e. the highest
PS of them is lower than 2h/s). In this case, selecting the top U instructions in PS

maximizes E(IRF).
Figure 3 shows the calculation of the upper bound of the scale. The input g, s, and

h are the sum of PD, PS , and PS logPS of the current IRF assignment, respectively. A
pre-calculated array g max[k][U], s max[k][U], and h max[k][U] stands for the sum of
PD, PS and PS logPS of the top U instructions with respect to PD, PS and PS logPS in
Ik, IK+1, ..., IN−1, respectively. If there are no unassigned entries or no instructions to
be assigned, the present IRF is complete: the upper bound of S(IRF) is the same as the
current S(IRF) (Lines 2–4). If the highest PS in the instructions under consideration is
higher than 2h/s, there is a chance of adding instructions with PS of 2h/s (Lines 7 and
8); otherwise, the top U instructions in PS are selected (Lines 11 and 12). In both cases,
the top U instructions in PD are used for the upper bound of γ(IRF) (Lines 6 and 10).
The upper bound of S(IRF) is obtained in Line 14 by rearranging Equations 3, 5 and 6.

4.2. Evaluation Methodology for Optimal Selection

For profiling, we use 36 traces of MiBench [18], compiled and statically linked with
gcc 4.7.3, uClibc 0.9.33.2, and binutils 2.21. The target instruction set is MIPS32 Release
1, with floating point instructions. The compile options are the same as the defaults of
MiBench. Some files were slightly modified to avoid compile errors probably caused by
the difference of compiler versions. The instruction profiles are gathered with a modified
version of SimMips version 0.7.5 [19].

For a performance reason, the branch-and-bound algorithm is implemented with C,
parallelized with OpenMP, and executed on Ubuntu 12.04 LTS. The number of candidates
M is set to N × 5/4 (rounded down). Instructions that have the highest PD + PS are
chosen as the candidates. In addition of the list of selected instructions and the scale of
tamper resistance, we evaluate the execution time of the body of the algorithm using a
workstation with a Core i7 3770 and 16 GB of DRAM. It is measured three times and
the median value is used as the result.

10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0

S
ta

ti
c

O
cc

u
rr

en
ce

P
ro

b
a

b
il

it
y

 P
S

[%
]

Dynamic Execution Frequency PD [%]

Selected (Multiple) Selected Not Selected

Figure 4: PD–PS plot of candidates for the optimal selection of a 48-entry IRF (except nop).

4.3. Selected Instructions

Figure 4 presents the distribution of PD and PS of candidates for the optimal selection
of a 48-entry IRF. The X- and Y- axes are the dynamic execution frequency PD and the
static occurrence probability PS , respectively. A white circle represents a candidate
that was selected as an IRF instruction with a single entry. A black circle stands for a
candidate that was assigned to multiple IRF entries. An X mark means a candidate that
was excluded from the IRF. One of the candidates, nop instruction, is not shown in the
figure because its probability was too high.

Most of the instructions that were not listed in the IRF had low dynamic frequencies
PD, which would decrease γ(IRF) if selected. The few other instructions had quite low
static probabilities PS . They would harm the flatness of the indices distribution E(IRF).
Instructions with very high PS , which might also decrease the flatness, were divided into
multiple entries rather than being removed from the IRF.

4.4. Calculation Time for Optimal Selection

Figure 5 plots the execution time of the branch-and-bound algorithm. The X-axis is
the number of IRF entries N and the Y-axis is the execution time in a logarithmic scale.
For N ≥ 24, the execution time increased exponentially. If it continued to grow, it would
take 7.6 years to give an assignment of an IRF with only 64 entries! For a large IRF,
heuristic algorithms are essential to find a sub-optimal selection.

11

16 24 32 40 48

E
x

e
c
u

ti
o

n
 t

im
e

of IRF entries

Optimal
1000 s

100 s

10 s

1 s

100 ms

10 ms

1 ms

10000 s

Figure 5: Execution time of the branch-and-bound algorithm to find the optimal selection.

5. Heuristic Algorithms

This section describes two heuristic algorithms, precision-oriented [17] and time-
oriented, both of which are based on a local search. A genetic algorithm is often used for
combinatorial optimization problems, especially when there is high possibility of falling
into local optimum. Though a local search is much simpler than a genetic algorithm, it
can give solutions sufficiently near to the optimal for some problems. This section also
presents the evaluation of our algorithms, including how far their solutions are from the
optimal (in Section 5.4) and how long they take (in Section 5.6).

5.1. Precision-oriented Algorithm

Figure 6 shows the precision-oriented algorithm, which has been proposed in the pre-
liminary version [17]. Any combination of N instructions without duplication is allowed
as an initial IRF instructions, though computation cost will be smaller by selecting in-
structions that have the highest PD+PS . The lists of candidates for addition and removal
are called List add and List rem, respectively. List add can be limited to about 3N/2
instructions that have the highest PD + PS . The resulting combination does not change
in most cases.

The main loop of the algorithm is composed of three parts:

• finding a candidate for addition (c add) and the number of entries to be swapped
(n add) where the increase of the scale by adding n add entries of c add divided by
n add is maximized,

• finding n add candidates for removal (C rem) that have the minimum decrease of
the scale by their removal, and

12

1: IRF ← any N instructions
2: List add← all instructions
3: List rem← IRF
4: loop
5: scale cur ← S(IRF)
6: find c add and n add that maximize {S(IRF + c add×n add)− scale cur}/n add from List add
7: scale inc← S(IRF + c add× n add) - scale cur
8: C rem← an empty array
9: scale dec← 0

10: for i in [1..n add] do
11: find c that maximize S(IRF − c) from List rem− c add− C rem
12: C rem← C rem + c
13: scale dec← scale dec + (scale cur − S(IRF − c))
14: end for
15: if scale inc > scale dec then
16: IRF ← IRF + c add× n add− C rem
17: List rem← List rem− c add− C rem
18: else
19: break
20: end if
21: end loop

Figure 6: Pseudocode for selecting IRF entries (Precision-oriented) [17].

• replacing instructions in C rem with c add.

They corresponds to Lines 5–8, 9–14, and 15–20 in Figure 6, respectively. The swap
occurs only if the expected increase of the scale by addition is more than the expected
decrease by removal; otherwise, the current combination of IRF is output as a sub-
optimal solution.

Note that Equations 8, 9 and 10 simplify the calculation of the scale in Lines 6 and
11. With this simplification, the time complexity of this precision-oriented algorithm
changes from O(N3) to O(N2), for the complexity of a search for the candidate becomes
O(N) and the number of repetition is up to N .

5.2. Time-oriented Algorithm

For a larger IRF, we propose a time-oriented algorithm where the time complexity
is reduced to O(N logN) at the sacrifice of the precision of the assignment. The points
of the algorithm are to evaluate candidates with simpler functions and to use priority
queues for quick selection of candidates. The time-oriented algorithm consists of two
steps that have different evaluation functions.

Figure 7 shows the first step of the algorithm to reduce the number of candidates
for IRF instructions to N . Duplication of entries is not considered in this step. In
the beginning of the algorithm, it calculates the expected increase of S by a non-IRF
instruction (Line 4) and the expected decrease of S by an IRF instruction (Line 5). Since
these values are never updated and the accuracy of expectation is low, before swapping
the candidates for addition and removal, the algorithm checks if the scale will actually
be increased (Line 11). If the check fails, either of the candidates is removed from the
corresponding list (Lines 15–18).

Figure 8 outlines the second step of the algorithm that selects the entries to be
duplicated. In this step, each IRF instruction candidate keeps the number of entries

13

1: IRF ← any N instructions
2: Queue add,Queue rem← new priority queue
3: for inst in all instructions do
4: Queue add.insert(inst, S(IRF + inst)− S(IRF)) if inst /∈ IRF
5: Queue rem.insert(inst, S(IRF)− S(IRF − inst)) if inst ∈ IRF
6: end for
7: while Queue add.max priority> Queue rem.min priority do
8: c add← Queue add.max key
9: c rem← Queue rem.min key

10: IRF new ← IRF + c add− c rem
11: if S(IRF new) > S(IRF) then
12: IRF ← IRF new
13: Queue add.delete(c add)
14: Queue rem.delete(c rem)
15: else if rand(2) = 0 then
16: Queue add.delete(c add)
17: else
18: Queue rem.delete(c rem)
19: end if
20: end while

Figure 7: Pseudocode for selecting IRF entries (Time-oriented, Step 1).

1: IRF ← IRF calculated in Step 1
2: Queue add,Queue rem← new priority queue
3: for inst in IRF do
4: Queue add.insert(inst, PS(inst))
5: Queue rem.insert(inst, PD(inst))
6: Multi[inst]← 1
7: end for
8: while Queue rem is not empty do
9: c add← Queue add.max key

10: c rem← Queue add.min key
11: IRF new ← IRF + c add− c rem
12: if S(IRF new) > S(IRF) then
13: IRF ← IRF + c add− c rem
14: Multi[c add]←Multi[c add] + 1
15: Queue add.delete(c add)
16: Queue add.insert(c add, PS(c add)/(Multi[c add]× 2 + 1))
17: Queue rem.delete(c add)
18: else if S(IRF new) < S(IRF)− threshold then
19: break
20: end if
21: Queue add.delete(c rem)
22: Queue rem.delete(c rem)
23: end while

Figure 8: Pseudocode for selecting IRF entries (Time-oriented, Step 2).

14

currently assigned, which is represented as Multi in Figure 8. The candidate for addition
(i.e. duplication) is selected according to the static occurrence probability PS divided by
Multi times 2 plus 1 (Lines 4 and 16). This division corresponds to the Sainte-Laguë
method in voting systems, which favors those who receive fewer assignments [20]. It
shows a good balance between the evenness of the distribution of IRF entries and the
number of instructions that remain in the IRF. As the candidate for removal, the least
frequently executed instruction, i.e. the instruction with the least PD, is selected (Line
5). Just the same as the first step, a swap of the candidates will occur only if the scale
will actually be increased (Lines 11–14). This step continues until every instruction is
either duplicated or examined once as a candidate for removal, though we can abort it
if the decline of the scale after the swap reaches a certain threshold (Lines 18–19).

5.3. Evaluation Methodology for Heuristic Algorithms

We use the same instruction profiles as we used in Section 4.3 for the MIPS ISA. To
examine the sensitivity to the instruction set, we also use MiBench traces of the ARMv7-
A ISA. The ARM profiles are obtained with a modified version of QEMU version 1.7.0
[21].

The heuristic algorithms are implemented with Ruby. Their input is an instruction
profile, which is sorted by PD + PS on ahead. The implemented script is executed by
Ruby 2.2.2 on Cygwin 2.0.2. Since there are no standard priority queue libraries for
Ruby, we uses the PriorityQueue library on RubyGems, which implements a Fibonacci
heap with C [22].

We examine four algorithms shown below with various numbers of IRF entries N .

• max dyn aims to maximize γ(IRF) or the sum of dynamic execution frequency in
the IRF which corresponds to the original proposal [13].

• optimal is the branch-and-bound algorithm that finds the optimal solution (Sec-
tion 4.1),

• precision is the precision-oriented algorithm (Section 5.1), and

• time is the time-oriented algorithm (Section 5.2) where the threshold to abort the
search is set to 10−4.

5.4. Optimal Versus Sub-optimal

Figure 9 shows the scale of tamper resistance S(IRF) in MIPS with the heuristic
algorithms where the number of entries N is small enough (up to 48) to find the optimal
solutions. The Y-axis is the scale relative to the optimal selection: if the selection with
the heuristic algorithm is the same as the optimal one, the relative scale becomes 100 %.

The precision-oriented algorithm found assignments the same as or quite similar to
(within 0.1% in the scale) the optimal. The decrease of the scale with the time-oriented
algorithm varies with size but it is less than 0.3% at a maximum and about 0.15% on
average. For a local search is good enough to find a sub-optimal IRF assignment, complex
metaheuristics such as a genetic algorithm are not necessary for our purpose.

Table 1 explains the difference between heuristic algorithms. It shows the number
of entries assigned to each of the top five MIPS instructions in PD + PS . The greatest

15

99.7%

99.8%

99.9%

100.0%

16 24 32 40 48

R
el

a
ti

v
e

S
(I

R
F

)
to

 O
p

ti
m

a
l

of IRF Entries

Precision Time

Figure 9: The scale of selection of heuristic algorithms relative to the optimal selection.

Table 1: The number of entries assigned to the most frequent instructions.

Rank Mnemonic precision time

1 nop 57 60
2 jr $ra 15 16
3 lw $gp, 16($sp) 12 0
4 addu $gp, $gp, $t9 9 10
5 lui $gp, 2 10 10

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

γ
(I

R
F

):
 F

re
q

u
en

cy
 o

f

IR
F

 I
n

st
ru

ct
io

n
 E

x
ec

u
te

d

E(IRF): Normalized Entropy of IRF Indexes

max_dyn (MIPS) precision (MIPS)

max_dyn (ARM) precision (ARM)

64

256

4096

64

256

4096

64

256

4096

1024 1024

1024

Figure 10: The difference of the breakdown of the scale with the size of the IRF.

difference is found in the third instruction, lw, which was given twelve entries by precision
but removed from the IRF by time.

According to the evaluation results in Section 4.4, instructions with large PS tend
to be divided into multiple entries. However, simply removing some of such instructions
from the IRF may also be profitable. In the time-oriented algorithm, once an instruction
is removed in the first step, it is never reviewed in the second step. The slight decrease of
the scale is caused by the difference of the benefit between its removal and its duplication.

5.5. ISA and IRF Size Sensitivity

Figure 10 depicts the difference of the effectiveness of our methods with the size of
the IRF. The X- and Y- axes stand for E(IRF) and γ(IRF), respectively. Each point
represents the evaluated value with a certain IRF size. The cases of 64, 256, 1024, and
4096 entries are shown as outlined points. There is an about 4

√
2 times difference in the

number of entries between adjacent points. The results of time are omitted from Figure
10 because there is little difference between precision and time.

In terms of the improvement rate of the scale with precision, our algorithms worked
more efficiently with a smaller IRF. For example, the improvement rates with 64-entry
and 4096-entry IRF in MIPS were 31.1% and 17.3%, respectively. The rate also varied
with instruction sets: the increase of the scale was smaller in ARM than in MIPS. A
4096-entry IRF in ARM showed 10.2% increase with precision. The difference comes
from the original distribution of instructions, which is especially biased among high-
ranked instructions. E(IRF) was steeply improved in max dyn with the increase of the
entries, while it was gently increased in precision. However, it could also be said that
precision gave a flat distribution even with a small IRF.

17

16 64 256 1024 4096

E
x

e
c
u

ti
o

n
 t

im
e

of IRF entries

Optimal Precision (w/o Simplification) Precision Time

1000 s

100 s

10 s

1 s

100 ms

10 ms

1 ms

0.1 ms

Figure 11: The difference of the execution time with the algorithm.

Comparing between the different IRF sizes, the scale of the IRF with precision was
almost the same as that of the 23/4 ≈ 1.68 times and 21/4 ≈ 1.19 times larger IRF with
max dyn in MIPS and ARM, respectively. This result suggests that our proposal achieves
the same tamper resistance as the original IRF with the smaller size of the IRF simply
by the modification of the way to decide the IRF contents.

5.6. Calculation Time for Sub-optimal Selection

Figure 11 shows the difference of the execution time of the proposed algorithm in
MIPS ISA. The X- and Y- axes, both of which use logarithmic scales, mean the number
of entries N and the execution time. For precision-oriented algorithm, the results without
the simplification of calculation shown in Section 3.3 are also shown by outlined points,
which represent the preliminary study [17]. Note that a direct comparison of optimal
with other algorithms does not make sense because it is implemented in a different way:
we intend to explain its tendency.

The execution times of precision with and without the simplification, almost followed
exponential functions. They are approximately proportional to N1.95 and N2.81, respec-
tively. The time-oriented algorithm provided much better performance, which gave a
sub-optimal assignment of a 4096-entry IRF in 186 milliseconds. The loss in the scale
of tamper resistance was 0.2% on average and 0.5% at a maximum. The new algorithm
along with the simplification for the calculation of the scale made the time for the search
for IRF assignment be short enough, though an improved implementation, such as the
use of C and parallelization, might further accelerate the search.

18

pc_next

cache

ddr_

ctrl

MMIO

mem_ctrl

stage #0 stage #1

control reg_bank

bus_mux

stage #2 stage #3

mlite_

cpu

Figure 12: The two-stage pipeline of the Plasma processor [23], whose actual number of pipeline stage
is four.

6. FPGA Implementation

6.1. Use of Block RAM

This section describes an implementation of a large IRF, where Block RAMs (BRAMs)
are used for efficiency, and its evaluation on a Xilinx FPGA. To focus on the overhead of
the addition of the IRF, instruction packing [13] is not applied: normal MIPS instruc-
tions are transformed to specialized ones (each of which has a predefined opcode and
an index of the IRF) on a one-to-one basis. The program is modified a priori so that
IRF instructions can be replaced into the corresponding specialized instructions, which
are translated back by the IRF. Although we have illustrated the IRF in Figure 1 as an
asynchronous RAM, BRAMs are synchronous. It means that some processors require an
additional cycle or pipeline stage before instructions are passed to the decoder.

We chose Plasma [23] (the latest snapshot as of September 2013) as the target pro-
cessor. Figure 12 abstracts its two-stage pipeline, which is actually composed of four
stages. Before the instruction fetch stage (stage #1), the Plasma core, called mlite cpu,
determines the address to fetch in pc next and mem ctrl and gives it to a cache, DRAM
controller (ddr ctrl), and various memory-mapped I/O (MMIO) devices at the stage #0.
Decode, register fetch, and execute stages are unified to the stage #2. If the instruction
turns out to be load or store, the target address is calculated at the ALU and passed
to mem ctrl. In this case, the memory controller performs load or store instead of in-
struction fetch, causing a pipeline stall. The loaded data is written to the register at the
stage #3. To add an IRF to Plasma, the fetched instruction latched in the gray register
in Figure 12 has to be intercepted before it is passed to the decoder (control).

Figure 13 shows an implementation of the IRF [17]. We assume a 1024-entry IRF
accessed with a 10-bit index in the Figure. IN means an instruction fetched from the
instruction memory or cache. OUT stands for an instruction to be passed to the decoder.
The IRF is accessed with specific 10 bits of IN, while at the same time IN is stored to
a register. In the next cycle, if the stored instruction is a specialized (IRF-referring)

19

D Q

ENStall

32 32

IRF

EN

A D
32

32

IN

OUT

10

stage #1 stage #2

Figure 13: An implementation of the IRF, where the output of the IRF is passed to the decoder when
a specialized instruction is fetched.

instruction, the IRF-side instruction is selected and passed to the decoder; otherwise,
the register-side instruction is selected. In addition, when the pipeline stalls (shown as a
signal Stall), the enable signals (EN) of the IRF and the registers are negated and thus
the output remains unchanged.

6.2. Evaluation of Hardware Overhead

This section examines the influence of the IRF on the performance and the hardware
resources of Plasma. Several approaches based on ISR and encryption are also evaluated
for comparison. The encryption-based approach decrypts instructions that have been
encrypted by AES with a 128-bit. Like the simple XOM architecture [1], decryption
occurs on reading instructions from the main memory to the caches. Since the block
length of AES is 128 bit, the DRAM controller of Plasma is modified so that it could
read a 128-bit block at once. The decrypted block is buffered until another block is read:
it responds to a continuous read request to the same block without overhead. To be fair,
this modification is applied to all examined implementations.

The amount of hardware was evaluated with the number of slices (basic logic blocks in
Xilinx FPGAs), flip-flops and LUTs (as components of slices), and BRAMs. The Dhrys-
tone benchmark was used for the performance measurement: the performance index was
Dhrystone MIPS (million instructions per second): the maximum operating frequency
(Fmax) of the circuit in MHz multiplied by the IPC (instructions per cycle). The circuits
were synthesized and implemented with Xilinx ISE 14.7. The synthesis and implemen-
tation options were the PlanAhead Defaults (XST 14) and the ParHighEffort (ISE 14)
presets with ignoring timing constraints (-x), respectively. The system operation was
verified on the Xilinx Spartan-3E Starter Board.

We evaluated the following six implementations of Plasma:
20

Table 2: The results of FPGA implementations.

Approach Slice FF LUT BRAM DMIPS Fmax IPC

Baseline 2,177 834 3,921 5 16.9 36.4 0.464
XOR 2,179 839 3,923 5 16.6 35.7 0.464
Shuffle-Bit 2,194 839 3,953 5 16.7 35.9 0.464
Shuffle-Op 2,241 838 4,045 5 16.6 35.7 0.464
IRF 2,194 822 3,972 7 14.8 32.0 0.464
AES 3,874 1,119 7,346 5 14.6 35.5 0.411

• Baseline was a modified Plasma with a 128-bit DRAM controller, configured to
have two-stage pipeline, 4kiB instruction/data cache, and 4kiB internal memory
for bootloader;

• XOR inserted a 32-bit bitwise XOR function with a value [3, 7] before the fetched
instruction is latched;

• Shuffle-Bit inserted a bit-transposition logic [3, 7] before the latch;

• Shuffle-Op added ROMs to shuffle opcode, function and rt fields of MIPS instruc-
tions [5] before the latch;

• IRF meant the proposed approach depicted in Figure 13; and

• AES added an AES decryption circuit [24], which took 10 cycles to decrypt a
128-bit block, to the DRAM controller.

As we described in Section 2.3, we assume the mapping of the IRF is common to all
processes, which means the IRF is implemented with ROMs whose contents are written
on the circuit programming. In the existing ISR approaches, XOR, Shuffle-Bit, and
Shuffle-Op, the value to be XORed or the mapping of the shuffling block is fixed for each
circuit. Since this leads large variability among the resulting circuits, we generated ten
circuits for each approach and the average value was used as the result.

The implementation results are summarized in Table 2. The increase of slices by
addition of the IRF was 17 or 0.8% of the baseline Plasma, which was comparable with
other ISR approaches. In the AES implementation, however, the additional circuit con-
sumed 78% of slices of the processor itself. The IRF implementations required additional
two 18 kib BRAMs, which was appropriate because the IRF was a 1024-word, 32-bit
RAM. Since the power consumption of an FPGA is well correlated with the number of
logic units in use, we expect that the additional power consumption will also be similar
to other ISR approaches.

In respect of performance, the Dhrystone MIPS (DMIPS) of the IRF reduced by 12%
unlike the other ISR approaches. The degradation was also observed in the encryption
approach, which came from a loss of executed instructions per cycle (IPC) caused by a
larger penalty on an instruction cache miss.

According to the reports by CAD tools, the critical path of the Plasma processor
resides in the stage #2 – decoding instruction, reading register, checking if a branch
is taken, calculating the next program counter, and accessing the cache. Hence, the

21

addition of accesses to the IRF and the multiplexer to the stage #2 directly affected
the length of the critical path, causing the drop of the maximum frequency (Fmax). In
the other ISR approaches, the additional logic can be put at either stage: we put it
at the stage #1 in this evaluation to avoid the critical path. Although this difference
might affect the flexibility of pipeline, we think the problem of performance degradation
is solvable as a matter of pipeline design.

7. Discussion

This section discusses the effect of one-to-multiple assignments to the IRF against
frequency analysis and further possible attacks to our scheme with some countermeasures.

If a single IRF entry is assigned to each instruction, the derived instruction sequence
is regarded as a simple substitution cipher. The frequency analysis works effectively to
decipher this kind of sequence, since the occurrence frequency is preserved. Two or more
IRF entries may be assigned to a single instruction, as in our algorithms, to equate the
occurrence probability of each IRF entries. The derived instruction sequence is catego-
rized as a homophonic substitution cipher. If the frequency profile is well scrambled, a
homophonic cipher becomes more difficult target to decipher.

Although the frequency analysis on digram or multigram is still applicable [16], it
is practically difficult to decipher a homophonic cipher with simple approaches, particu-
larly when the number of alphabet is large. Therefore, heuristics and other techniques are
empirically applied with dictionary-based approach. For an example, Oranchek [25] pro-
posed a dictionary-based attack combined with genetic algorithm. Ravi and Knight [26]
presented a Bayesian approach that combines letter n-gram models and word dictionaries.
Thus, to decipher an IRF-based instruction sequence, the heuristics or domain-specific
approaches on the target instruction set architecture would be required.

Other lightweight ISR-based approaches [3, 5, 7], on the other hand, are quite vulner-
able to the frequency analysis. For the XOR function, the key might be easily guessed
by extracting some most frequently appeared instructions. Deciphering bit-transposed
instructions might also be easy because the appearance of 0 and 1 varies widely with
bit position. Therefore, they have little effect on the resistance of reverse engineering:
they are more suitable for preventing the injection of malicious instructions, along with
runtime encryption like ASIST [7].

The point of our approach is to stop obfuscating the all instructions, which leads to
a cost-effective obfuscation of instruction sequences. However, it also causes a risk of
heuristic guess of instructions – obfuscated instructions might be guessed from the plain
instructions nearby. Figure 14 shows pieces of MIPS assembly code, which were actually
compiled from the C sources of MiBench, along with comments to IRF instructions. In
the obfuscated instruction sequences, the commented instructions are translated into the
IRF references.

The examples (a) and (b) include IRF instructions that might be predictable. In
the example (a), three move pseudoinstructions are lined up and the center of them will
be replaced to the IRF reference. However, if someone looks at this piece of obfuscated
code, it might be easy for him or her to guess that it is move t7,t1. In the example (b),
an mflo in Line 3 will be translated. Since mflo instructions are used to take the result
of the previous multiplication or division from a special-purpose register, they tend to

22

1 li s0 ,79

2 move t6,t0

3 move t7,t1 ;[IRF A]

4 move t8,t2

5 lw t2 ,0(v0)

6 xor a3,a3 ,t5 ;[IRF B]

7 xor a1,a1 ,t3

(a)

1 addu a0,s1,a0

2 mult a0,v0

3 mflo a1 ;[IRF C]

4 addu a1,a1,s2

5 addu a0,s0,a1

(b)

1 lbu s6 ,-2(a0)

2 addu s7,t8,s7 ;[IRF D]

3 subu a3,v0,a3 ;[IRF E]

4 lbu t8 ,0(a1)

5 lbu a1 ,-1(a0)

6 subu s6,v0,s6 ;[IRF F]

7 addu s7,t0,s7

8 lbu a3 ,0(a3) ;[IRF G]

9 lbu t0 ,0(a0)

10 subu a1,v0,a1 ;[IRF H]

11 addu s7,t8,s7 ;[IRF D]

12 lbu t8 ,0(s6)

13 lbu s6 ,1(a0)

14 lbu t9 ,0(a1)

15 subu t0,v0,t0 ;[IRF I]

16 addu s7,a3,s7

17 lbu a3 ,2(a0)

18 addu a1,t5,v1

19 addu s7,t8,s7 ;[IRF D]

20 subu s6,v0,s6 ;[IRF F]

(c)

Figure 14: Examples of compiled codes and how some of them are translated into the references of the
IRF.

be placed immediately after multiplication and division. Thus it might also be easy to
guess them, unless the adjacent multiplications and divisions are obfuscated as well.

One of the possible countermeasures against the heuristics is to shuffle the order of
instructions as far as their flow and dependency are preserved. This technique has been
examined to diversify instruction sequences [27]. It weakens the relationship between
the adjacent instructions. In shuffling the instruction order, placing IRF instructions
consecutively may provide better obfuscation. Considering longer instruction sequences
like the example (c), consecutive references to the IRF obstacles the heuristic guess of
instructions. Insertion of dummy instructions may also be helpful. For example, in the
example (a), any instruction that writes to the register a1 can be inserted right before
mflo without breaking the semantics. If one or more IRF instructions are inserted as
dummy instructions, the attack will be even more difficult. Nevertheless, some unob-
fuscated instructions still remain regardless of their order and they might be clues to
guess the obfuscated instructions. For example, addu instructions in Lines 7 and 16 of
(c) remain unchanged, where the register s7 is involved just like the IRF instruction D
in Lines 2, 11, and 19.

Another possible countermeasure is to merge similar instructions by parameterization
or indirection. Since the originally proposed IRF was very small, two approaches were
proposed in [13] to gather two or more similar instructions into a single IRF entry.
One approach is to parameterize a part (or some parts) of instructions. While the
original approach parameterized immediate values [13], register specifiers can also be
parameterized as we have studied in [28]. However, for the tamper-aware use of the IRF,

23

the distribution of parameters itself should also be robust against frequency analysis. The
other approach is to add another way to express the register specifiers. This approach
introduces a positional register specifier that stores the distance to the instruction where
the corresponding register was used last. It might help the frequency distribution be
flatter because some instructions will belong to two groups of IRF instructions: one
expresses the register specifiers in the traditional manner and the other specifies the
register positionally. Moreover, some other instructions might get resident in the IRF by
reordering them to fit their positional specifiers into IRF entries.

We could provide a better protection while keeping small hardware overhead if we
examined these countermeasures in detail, though we leave it as future work.

8. Conclusion

This work presented the utilization of the IRF, which provided the indirect access to
instructions in processors, to protect embedded software. The key points of our proposal
are summarized as follows: (1) the flatness of the index distribution of the IRF should
be considered against frequency analysis; (2) the most frequent instructions should be
given multiple IRF entries; (3) it is possible to find a sub-optimal assignment of the IRF
quickly with a minimal loss of precision with proper simplification of the algorithm; and
(4) it can be implemented with a minimal hardware cost. According to our evaluation
results, the precision-oriented algorithm gave the optimal assignment in most cases when
the IRF size is small. The time-oriented algorithm reduced the calculation time to about
1/100 with 0.2% less precision than precision-oriented. We successfully implemented the
large IRF with a modest cost: 0.8% of additional logic elements of the target processor
and 12% of the performance overhead.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the
Japan Society for the Promotion of Science (JSPS).

References

[1] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, M. Horowitz, Architectural
support for copy and tamper resistant software, in: Proceedings of the ninth international conference
on Architectural support for programming languages and operating systems, 2000, pp. 168–177.
doi:10.1145/378993.379237.

[2] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, S. Devadas, AEGIS: architecture for tamper-evident
and tamper-resistant processing, in: Proceedings of the 17th annual international conference on
Supercomputing, 2003, pp. 160–171. doi:10.1145/782814.782838.

[3] G. S. Kc, A. D. Keromytis, V. Prevelakis, Countering code-injection attacks with instruction-set
randomization, in: Proceedings of the 10th ACM conference on Computer and communications
security, 2003, pp. 272–280. doi:10.1145/948109.948146.

[4] E. G. Barrantes, D. H. Ackley, S. Forrest, D. Stefanović, Randomized instruction set emulation,
ACM Trans. Inf. Syst. Secur. 8 (1) (2005) 3–40. doi:10.1145/1053283.1053286.

[5] S. Ichikawa, T. Sawada, H. Hata, Diversification of processors based on redundancy in instruction
set, IEICE Trans. Fundam. E91-A (1) (2008) 211–220. doi:10.1093/ietfec/e91-a.1.211.

[6] G. Portokalidis, A. D. Keromytis, Fast and practical instruction-set randomization for commodity
systems, in: Proceedings of the 26th Annual Computer Security Applications Conference, 2010, pp.
41–48. doi:10.1145/1920261.1920268.

24

http://dx.doi.org/10.1145/378993.379237
http://dx.doi.org/10.1145/782814.782838
http://dx.doi.org/10.1145/948109.948146
http://dx.doi.org/10.1145/1053283.1053286
http://dx.doi.org/10.1093/ietfec/e91-a.1.211
http://dx.doi.org/10.1145/1920261.1920268

[7] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, S. Ioannidis, ASIST: Architectural Support
for Instruction Set Randomization, in: Proceedings of 20th ACM Conference on Computer and
Communications Security, 2013, pp. 981–992. doi:10.1145/2508859.2516670.

[8] J.-L. Danger, S. Guilley, F. Praden, Hardware-enforced Protection against Software Reverse-
Engineering based on an Instruction Set Encoding, in: Proceedings of the 3rd ACM SIGPLAN Pro-
gram Protection and Reverse Engineering Workshop, no. 5, 2014. doi:10.1145/2556464.2556469.

[9] C. Linn, S. Debray, Obfuscation of Executable Code to Improve Resistance to Static Disassembly,
in: Proceedings of the 10th ACM Conference on Computer and Communications Security, 2003,
pp. 290–299. doi:10.1145/948109.948149.

[10] A. Monden, A. Monsifrot, C. Thomborson, Tamper-Resistant Software System Based on a Finite
State Machine, IEICE Trans. Fundam. E88-A (1) (2005) 112–122. doi:10.1093/ietfec/e88-a.1.

112.
[11] C. Collberg, C. Thomborson, D. Low, A Taxonomy of Obfuscating Transformations, Tech. Rep.

148, Department of Computer Science, University of Auckland (1997).
[12] H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, P. chung Yew, Control Flow Obfuscation with Infor-

mation Flow Tracking, in: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009, pp. 391–400. doi:10.1145/1669112.1669162.

[13] S. Hines, J. Green, G. Tyson, D. Whalley, Improving program efficiency by packing instructions into
registers, in: Proceedings of the 32nd annual international symposium on Computer Architecture,
2005, pp. 260–271. doi:10.1109/ISCA.2005.32.

[14] S. Hines, G. Tyson, D. Whalley, Reducing instruction fetch cost by packing instructions into regis-
terwindows, in: Proceedings of the 38th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2005, pp. 19–29. doi:10.1109/MICRO.2005.27.

[15] D. Chang, S. Hines, P. West, G. Tyson, D. Whalley, Program differentiation, in: Proceedings of
the 2010 Workshop on Interaction between Compilers and Computer Architecture, no. 9, 2010.
doi:10.1145/1739025.1739038.

[16] F. L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology, 4th Edition, Springer, 2006.
[17] N. Fujieda, S. Ichikawa, Enhanced Instruction Register Files for Embedded Software Obfuscation,

in: Proceedings of the 29th International Conference on Computers and Their Applications, 2014,
pp. 153–158.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B. Brown, MiBench: A free,
commercially representative embedded benchmark suite, in: Proceedings of 2001 IEEE International
Workshop on Workload Characterization, 2001, pp. 3–14. doi:10.1109/WWC.2001.990739.

[19] N. Fujieda, T. Miyoshi, K. Kise, SimMips A MIPS System Simulator, in: Proceedings of 2009
Workshop on Computer Architecture Education, 2009, pp. 32–39.

[20] M. Gallagher, Proportionality, Disproportionality and Electoral Systems, Elect. Stud. 10 (1) (1991)
33–51. doi:10.1016/0261-3794(91)90004-C.

[21] F. Bellard, QEMU, a Fast and Portable Dynamic Translator, in: Proceedings of 2005 USENIX
Annual Technical Conference, 2005, pp. 41–46.

[22] Brian Schroeder. PriorityQueue — RubyGems.org [online, cited May 29, 2015].
[23] S. Rhoads. Plasma – most MIPS I(TM) opcodes [online, cited February 28, 2014].
[24] Aoki Laboratory. Cryptographic Hardware Project, Graduate School of Information Sciences, To-

hoku University [online, cited February 28, 2014].
[25] D. Oranchak, Evolutionary Algorithm for Decryption of Monoalphabetic Homophonic Substitution

Ciphers Encoded As Constraint Satisfaction Problems, in: Proceedings of the 10th Annual Con-
ference on Genetic and Evolutionary Computation, 2008, pp. 1717–1718. doi:10.1145/1389095.

1389425.
[26] S. Ravi, K. Knight, Bayesian Inference for Zodiac and Other Homophonic Ciphers, in: Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, 2011, pp. 239–247.

[27] K. Hattanda, S. Ichikawa, Redundancy in instruction sequences of computer programs, IEICE
Trans. Fundam. E89-A (1) (2006) 219–221. doi:10.1093/ietfec/e89-a.1.219.

[28] N. Fujieda, S. Ichikawa, An XOR-based approach to merging entries for instruction register files, in:
Proceedings of the 1st International Symposium on Computing and Networking, 2013, pp. 332–337.
doi:10.1109/CANDAR.2013.60.

25

http://dx.doi.org/10.1145/2508859.2516670
http://dx.doi.org/10.1145/2556464.2556469
http://dx.doi.org/10.1145/948109.948149
http://dx.doi.org/10.1093/ietfec/e88-a.1.112
http://dx.doi.org/10.1093/ietfec/e88-a.1.112
http://dx.doi.org/10.1145/1669112.1669162
http://dx.doi.org/10.1109/ISCA.2005.32
http://dx.doi.org/10.1109/MICRO.2005.27
http://dx.doi.org/10.1145/1739025.1739038
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1016/0261-3794(91)90004-C
https://rubygems.org/gems/PriorityQueue/
http://opencores.org/project,plasma
http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html
http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html
http://dx.doi.org/10.1145/1389095.1389425
http://dx.doi.org/10.1145/1389095.1389425
http://dx.doi.org/10.1093/ietfec/e89-a.1.219
http://dx.doi.org/10.1109/CANDAR.2013.60

Vitae

Naoki Fujieda received his D.E. degree in 2013 from the Depart-
ment of Computer Science of Tokyo Institute of Technology. Since
2013, he is an assistant professor of the Department of Electrical and
Electronic Information Engineering of Toyohashi University of Tech-
nology. His research interests include processor architecture, applied
FPGA systems, embedded systems, and secure processors. He is a
member of IPSJ, IEICE, and IEEE.

Tasuku Tanaka received his B.E. degree in 2014 from the Depart-
ment of Electrical and Electronic Information Engineering of Toy-
ohashi University of Technology. Presently, he is studying for his
master’s degree at that institution.

Shuichi Ichikawa received his D.S. degree in Information Science
from the University of Tokyo in 1991. He has been affiliated with Mit-
subishi Electric Corporation (1991-1994), Nagoya University (1994-
1996), Toyohashi University of Technology (1997-2011), and Numazu
College of Technology (2011-2012). Since 2012, he is a professor of
the Department of Electrical and Electronic Information Engineering
of Toyohashi University of Technology. His research interests include
parallel processing, high-performance computing, custom computing

machinery, and information security. He is a member of IEEE, ACM, IEICE, and IPSJ.

26

	Introduction
	Background
	Protection against Reverse Engineering and Instruction Set Randomization
	Instruction Register File
	Using IRF for Anti-tampering

	Scale of Tamper Resistance for the IRF
	Definition
	Use of One Kind of Instruction Profile
	Analysis of the entropy of the IRF indices

	Optimal Selection of IRF Instructions
	Branch-and-bound Algorithm
	Evaluation Methodology for Optimal Selection
	Selected Instructions
	Calculation Time for Optimal Selection

	Heuristic Algorithms
	Precision-oriented Algorithm
	Time-oriented Algorithm
	Evaluation Methodology for Heuristic Algorithms
	Optimal Versus Sub-optimal
	ISA and IRF Size Sensitivity
	Calculation Time for Sub-optimal Selection

	FPGA Implementation
	Use of Block RAM
	Evaluation of Hardware Overhead

	Discussion
	Conclusion

