
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING

IEEJ Trans 2014; 00: 1–12

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI:10.1002/tee

� �
This is the pre-peer reviewed version of the following article: Naoki Fujieda and Shuichi Ichikawa, “An XOR-based Parameterization

for Instruction Register Files,” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 10, No. 5 (09/2015), which has been

published in final form at http://dx.doi.org/10.1002/tee.22123. This article may be used for non-commercial purposes

in accordance with Wiley Terms and Conditions for Self-Archiving.� �
Paper

An XOR-based Parameterization for Instruction Register Files

Naoki Fujiedaa, Non-member

Shuichi Ichikawa, Non-member

The instruction register file (IRF) shortens and obfuscates instruction sequences by compressing multiple instructions into a

packed instruction. The IRF could improve its efficiency by parameterization, while the previously proposed parameterization

techniques did not extract the similarity of instructions well. In this paper, we propose an XOR-based parameterization to

utilize the limited capacity of the IRF more efficiently. According to our evaluation, with an improved algorithm of instruction

selection, our approach makes 20.2% more dynamic instructions IRF-resident than the previous techniques. It also reduces

the number of instruction fetches from the cache by 6.3% on average. We also confirmed that the hardware overhead of our

parameterization was about a quarter of the previous one. c⃝ 2014 Institute of Electrical Engineers of Japan. Published by John

Wiley & Sons, Inc.

Keywords: Computer Architecture, Embedded Systems, Instruction Fetch, Instruction Register Files

Received . . .

1. Introduction

In embedded systems, the reduction of power consumption has

been one of the greatest concerns. In particular, instruction fetch

logic in embedded processors is often considered as a target of

improvement because it is the most power-hungry part in some

processors [1]. More recently, the protection of embedded software

from reverse engineering has been another important issue because

it usually includes trade secrets. We can encrypt [2, 3] or obfuscate

[4, 5, 6, 7] instruction sequences to achieve it.

In terms of power consumption, there are two major approaches

to improve instruction fetch. One approach is to increase the

information density of fetched instructions, or to compress

instruction sequences. The addition of a high-density ISA is a

typical solution for RISC processors. For example, some MIPS

embedded processors support a 16-bit ISA called MIPS16 [8].

MIPS16 instruction set includes a fixed subset of original MIPS

instructions. Shrivastava et al. [9] reported that the code size

of MIPS32/16 program was reduced by 22% on average with a

careful selection of instructions. Similarly, some of recent ARM

processors have an additional 16- and 32-bit ISA called Thumb-2

[10]. However, the efficiency of such dual-ISA designs is heavily

dependent on applications: if most of the executed instructions are

not included in the subset, they must be executed by the traditional

instructions and thus the number of instruction fetches is almost

unchanged. The other approach is to supply most instructions from

a smaller storage than the L1 instruction cache. A filter cache [11]

and a loop cache [12] operate as L0 instruction caches, which try to

store heavily-reused instructions in different strategies. A software-

managed scratchpad memory [13] has a physical address that is

separated from the main memory.

An instruction register file (IRF) [14], which we focus on in

this paper, has the properties of the both approaches. The IRF is a

small memory storing the most common expressions of instructions

specified by the compiler. A remarkable difference from the L0

caches and the scratchpad memory is that the storage is accessed

by an index or indices in a fetched instruction rather than the

program counter. By packing frequently used instructions into a

single instruction with these indices, it improves the information

density of instructions and reduces the number of fetches from the

L1.

We can apply parameterization techniques for the IRF to address

a problem of tradeoff about the number of entries. Since the

efficiency of instruction packing depends on how many consecutive

IRF-referring instructions appear, the IRF should be large enough

to cover most of the frequently used instructions. However, if

c⃝ 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Prepared using teeauth.cls [Version: 2010/10/28 v1.00]

http://dx.doi.org/10.1002/tee.22123
http://olabout.wiley.com/WileyCDA/Section/id-820227.htm#terms


N. FUJIEDA AND S. ICHIKAWA

the IRF is too large, it will become meaningless because the

energy consumption by referring to the IRF and the width of

the indices will be increased. With the parameterization, we can

merge multiple instructions with similar expressions into a single

group. An instruction that is not the most common in a group

is parameterized: it is referenced not only with the corresponding

index but also with a parameter.

In addition, the IRF gives resistance against reverse engineering

by translating frequently used instructions into IRF indices, if the

contents of the IRF (i.e. the original expressions of the instructions)

are hidden [7, 15]. In this case, the original form of an IRF-referring

instruction might be guessed from other instructions nearby. For

example, when a hidden instruction is located between an increment

of register 3 and an increment of register 5, it is likely to be an

increment of register 4. In order to prevent such analyses, it is

similarly important for the IRF to cover more instructions with the

parameterization.

A problem of the previously proposed IRF implementation

resides in the inefficiency of parameterization. This paper

presents an improved parameterization technique called XOR-

based parameterization, along with algorithms to select IRF entries

with parameters. It is evaluated with traces of practical benchmarks

to show that our approach increases the coverage of the IRF and

reduces the number of instruction fetches.

We have presented a preliminary version of this work in

CANDAR 2013 [16]. The differences from the preliminary work

include:

• a new score-based algorithm for instruction selection that

covers the shortcomings of the previous frequency-based

algorithm (Section 4.2),

• an evaluation of hardware overhead with FPGA (Section

5.4),

• a comparative discussion with a simple large IRF without

parameterization (Section 6.1),

• a discussion about the feasibility of the IRF on ARM

architecture (Section 6.2), and

• a discussion about concerns of the parameterization for the

purpose of the protection from reverse engineering (Section

6.3).

The rest of this paper is organized as follows: Section 2 provides

an overview and shortcomings of the previous IRF proposal and

its parameterization techniques. The hardware organization of our

XOR-based parameterization is described in Section 3. In Section 4,

we examine how to select groups of instructions as IRF entries. We

evaluate the efficiency and the hardware overhead of our methods in

Section 5, and then some discussions are made in Section 6. Finally,

we conclude the paper in Section 7.

������
��

��	
�
�� �� �
��� �����

������ �� �� �� �
�����	
�

������ �� �� �

���	�� �����

������ �� �� �

���	��

������

������

�� �� �� �� � ���

�� �� �� �� � ���

�� �� �� ���

�� �� �� ��� �

������ ���	
 ���	� ���	�
���	

�����

���������	
��

�
���	�
�����

������ ���	
 ���	� ���	� ���	


�������
���	�������

� ���	�

����	
�� ���	
 ���	� ���	� ���	
 � �����

����	
�
 ���	
 ���	� ���	� ���	
 � �����

����	
�� ���	
 ���	� ���	� ���	
 � �����

����	
�� ���	
 ���	� ���	� ���	
 � �����

����	���
 ���	
 ���	� ���	� ����� � �����

����	���� ���	
 ���	� ���	� ����� � �����

����	��
� ���	
 ���	� ���	� ����� � �����

�� �� �� �� � ��� �

Fig. 1. A loosely packed instruction (R-Type and I-Type) includes
a regular instruction and an IRF instruction. Tightly packed

instructions (T-Type) contain up to 5 IRF instructions. [14]

2. Instruction Register File

2.1. Overview The instruction register file (IRF) [14] has

a set of frequently executed instructions, which are called IRF

instructions. It is placed between instruction fetch and instruction

decode stages and accessed by an index written in fetched

instructions. The target instruction set (MIPS in [14]) is modified

so that instructions can include an index or indices. If fetched

instructions refer to the IRF, the corresponding IRF instructions are

read and sent to the decoder. In other words, frequently executed

instructions are given different expressions, which are much shorter

than usual ones, by the IRF. The modified instruction set has two

kinds of instructions that include multiple instructions: loosely

packed and tightly packed.

The upper part of Figure 1 shows how the loosely packed

instructions modify the existing R-Type and I-Type instruction

formats of MIPS. The shamt field in the R-Type or a part of the

imm field in the I-Type is replaced by the 5-bit inst2 field, which

indicates an index for the IRF reference. When an R-Type or I-Type

instruction is followed by an IRF instruction, they can be packed

into a loosely packed instruction; however, if the latter instruction

does not reside in the IRF, they cannot be packed and the inst2 field

of the former instruction is set to (the index of) a nop.

The tightly packed instructions add the T-Type format, described

in the lower part of Figure 1, to the traditional MIPS instruction

formats. It is composed of a 6-bit opcode field, five 5-bit inst/param

2 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



AN XOR-BASED PARAMETERIZATION FOR INSTRUCTION REGISTER FILES

fields, and an S bit (a supplement bit to opcode). Each inst/param

field represents an index of the IRF or a parameter, which is

described later, attached to an IRF instruction. Thus each tightly

packed instruction contains up to five IRF instructions, four IRF

instruction with one parameter, or three IRF instructions with

two parameters. They consist of eight different instructions for

specifying the number of parameterized IRF instructions and their

positions. Parameterized IRF instructions are shown as shaded

fields in Figure 1.

In addition to the compression of instruction sequences for which

the IRF has originally been proposed, it provides resistance against

reverse engineering by hiding the original instruction sequences

with indices [7, 15]. This kind of obfuscation of the instruction

sequence is called instruction set randomization (ISR) [4, 5, 6].

Comparing with encryption of instruction memory such as the

Execute Only Memory (XOM) [2] and the AEGIS architecture [3],

most ISR approaches are not much robust in a cryptographic sense.

However, they are favorable for embedded systems because they

can be implemented with a minimal overhead.

In terms of obfuscation of instructions, one of the differences of

the IRF with the other ISR methods is that it does not hide all of the

instructions: it only hides IRF instructions. Thus it is also important

to cover more instructions with the IRF.

2.2. Parameterized IRF entries By parameterizing

instructions, we can merge multiple instructions with similar

expressions into a single entry in the IRF. An IRF that is referenced

by a 5-bit index contains 32 kinds of instructions, which is too few

to cover most of the frequent instructions. On the other hand, if each

entry represents 32 instructions differentiated by a 5-bit parameter,

the IRF will have as many as 1024 kinds of IRF instructions. An

instruction that is the most commonly used in a group is stored in

the IRF as a default so that it can be referenced without a parameter.

The other instructions in the group are reconstructed by an index

and a parameter.

The previously proposed IRF implementation uses three tech-

niques for merging similar instructions: compressing immediate

values with an immediate table, merging short-distance branches,

and using indirect register specifiers [14]. We introduce the first

two techniques; we do not consider the last technique in this paper

because it has little effect despite some shortcomings [14].

The first technique can be applied to I-Type instructions except

branches. An immediate table (IMM) is a 32-entry table that stores

the most common immediate values. If two instructions have the

same expressions in the fields other than immediate, and both the

immediate values exist in the table, they can be merged.

The second technique is for I-Type branch instructions. In these

instructions, immediate values are parameterized with a 5-bit signed

integer, which is sign-extended to 16-bit, rather than an index of the

immediate table. An immediate value in such an instruction means

��������� 	 � 
 � � 

������ ���	
 ���	� ���	� �
�
��
�
�

��������������������������

��������� ������!"

����

�����#�$�#�$�#�


������#�$�#�$�	�

������#
$�#
$�	�

%�&�#
$�#'$���(	
�

'�

	


(	�


�

	
�

�������������������������&�����

���� #�$�#�$�#�

����� #
$�#
$�(	

%�& #
$�#'$���)�*

+++ +++

��������� ������,,

-������� ���

-��,,.�/�0�(	��������

-�
�1���2����3��������

Fig. 2. How to extract the actual instructions from a tightly-packed
instruction in the original method[14].

the PC-relative branch offset ∗, or the distance to the branch target.

Though the offset will be recalculated in consequence of instruction

packing, it is always shortened and cannot get longer. Therefore,

when the instruction group corresponding to a branch is listed in the

IRF, once the immediate value can be expressed in 5 bits, the branch

is then treated as an IRF instruction regardless of the subsequent

recalculation of the distance.

Figure 2 illustrates an example of the extraction of the traditional

instructions from a parameterized packed instruction. From the

opcode field and the S bit, the packed instruction is identified

as param3 BC. It packs three instructions, where the second

and the third are parameterized. Since the first instruction does

not have a parameter, addu $2, $2, $3 is extracted from the

IRF without modification. The second instruction is a non-branch

instruction with a parameter; its immediate value is replaced with

-1, the corresponding entry of the IMM. The last instruction is a

parameterized branch instruction; the sign-extended parameter, 6, is

used as its immediate value. In this example, the packing efficiency

is increased by the parameterization because these instructions

would have to be written separately without it. Note that the

efficiency may also decrease; if the second and the third instructions

also resided in the IRF before parameterization and the subsequent

instruction was (instructions were) IRF-resident, it could packed

four or five instructions into one.

Figure 3 shows how parameterized IRF instructions are

reconstructed in the original implementation with these two

techniques. The two inputs, inst and param, are retrieved from

specific fields of a packed instruction. The IRF and the immediate

table are 32-bit and 16-bit RAMs, respectively. Both of them have

32 entries. SignExt means a sign extension unit where the 5-

bit parameter is sign-extended to a 16-bit immediate value. The

upper 16 bits of an instruction are read from the IRF and used

∗More precisely, the branch offset is relative to the PC of its delay slot (i.e.
the PC plus 4) [17].

3 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



N. FUJIEDA AND S. ICHIKAWA

���

���

�������

����

	
�
�

�
�
��
�
�
�
�
�
�


������


�����

Fig. 3. Extraction of instructions from the IRF in the original
method [14].

without modification; the lower 16 bits depend on which format

the instruction is, whether the corresponding entry is parameterized,

and whether the instruction has a parameter.

2.3. Shortcomings of the existing parameterization
The parameterization techniques in the previously proposed

implementation mainly have two problems on efficiency.

One problem is that these techniques can be applied to only I-

Type instructions. As a result of our preliminary experiment [16],

there is a certain amount of correlation between the number of

IRF entries corresponding to I-Type instructions and the increase

of IRF instructions executed with the previous techniques (i.e. their

availability). Parameterization methods should be able to be applied

to both I-Type and R-Type instructions.

Another problem is the imbalance of the immediate table

between the packing efficiency and the hardware overhead. By

consulting IRF instructions parameterized with the immediate table,

we notice that most of the variation of immediate values resides in

the few lowest bits. In other words, there is little chance that the

table provides significant benefit over just parameterizing with the

5 lowest bits. As a result, the immediate table may not be worth its

hardware cost, which is about a half as large as the IRF.

3. XOR-based Parameterization

In this section, an XOR-based parameterization is proposed to

achieve higher packing efficiency and lower hardware overhead

than the previous techniques. The discussion of the shortcomings

of the previous implementation can be summarized as that a new

technique should be capable of being applied to most instructions

and being implemented with simple hardware. Our method is

designed so that it can meet both of the requirements.

3.1. Coding of IRF Instructions Figure 4 shows the

formats of IRF entries. We call these 36-bit formats “codes” in this

paper. Each code has additional 4 bits, S, T, D, and I bits, as flags

of parameterization. They determine whether rs, rt, rd, and (the 5

lowest bits of) immediate fields in the entry will be XORed with

a parameter, respectively. R-Type instructions use S, T, and D bits,

and I-Type instruction use S, T and I bits. J-Type instructions, j

(jump) and jal (jump and link), does not utilize any additional

bits: they do not benefit from parameterization. However, many of

������ �� �� �� 	
�����
��

������

������ �� �� ������
��

������

�� �� �� �� � ���

�� �� �� ���

� � � �

� � � �

��

��

������ �
����

������

�� ���

� � � �

��

Fig. 4. The format of IRF entry for each type of MIPS instruction
[16].

� � � � ���
�� �� �� �� � ���

� � � �
��

�����������������	�

� � � � ���
�� �� �� �� � ���

�����������
����
	�

� � � � ���
�� �� �� �� � ���

�����������������
	��

	
�
�
�
���
����
���

� ����� � �����

� ����� � �����

Fig. 5. Example: merging two instructions into a single IRF entry
[16].

them can be translated into I-Type unconditional branches (b and

bal pseudoinstructions, which actually are beq and bgezal with

tautologies [17], respectively) and therefore some of them may be

included in the IRF instructions. The unused bits are set to zero to

keep the corresponding fields unchanged.

Figure 5 illustrates an example of grouping two similar

instructions, addu $v0, $a0, $a1 and addu $v0, $t0,

$t1. They differ in two source registers rs and rt. The actual

register numbers of rs and rt in the former instruction are 4

and 5, which can be expressed as 4 XOR 0 and 4 XOR 1,

respectively. Similarly, those of the latter instruction, 8 and 9,

can be described as 8 XOR 0 and 8 XOR 1, respectively. We

now introduce a pseudoinstruction of addu $v0, $P, $[Pˆ1]

using a parameter P, where ˆ is an XOR operator. It is encoded in

an IRF entry as described in the figure, asserting S and T bits that

correspond to rs and rt fields, respectively. The former instruction

can be retrieved from the pseudoinstruction with a parameter 4,

while the latter can be retrieved with 8.

Along with the pseudoinstruction shown above, addu $v0,

$[Pˆ4], $[Pˆ5] is also a possible pseudoinstruction that

coordinates the two addu instructions. In this case, the

parameters become 0 and 12. In general, there are 32 possible

pseudoinstructions that differ in the corresponding parameters from

each other. We define the normalized form of a code as the code

where the first parameterized field is zero. For example, the code

4 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



AN XOR-BASED PARAMETERIZATION FOR INSTRUCTION REGISTER FILES

���

����

�����

�
�
��
�
�
�
�
�
�

	
��
����	�����

	
��
��

�

	
�����

	������

	����

	
��

�

�
�

�

����

Fig. 6. Extraction of instructions from the IRF in the proposed
method [16].

for addu $v0, $P, $[Pˆ1] shown in Figure 5 is a normalized

form because the first parameterized field, or rs, is zero.

3.2. Difference in Hardware Organization Figure

6 shows how IRF instructions are extracted in our method in

hardware. The bit length of the IRF is increased from 32 bits to

36 bits to store the most frequent codes, rather than instructions,

in individual applications. The opcode and funct fields are sent to

the decoder without modification. The other fields are selected by

the corresponding flag bits from either the value in the entry or the

XOR of it and param.

We compare our merging method with the previous techniques

using Figure 3 and Figure 6. Even though our method requires 4

extra bits per entry in the IRF, it only spends a quarter of the 16-bit

immediate table. In addition, though selection logic is quite simple

in both methods, when they are implemented in an FPGA, our

implementation may enjoy additional benefit from an optimization

of putting an XOR and a selector into a single 3-input look-up

table. Therefore, it is expected that our method can be implemented

with much smaller hardware than the previous implementation. A

quantitative evaluation will be shown in Section 5.4.

4. Selection of IRF Instructions

4.1. Frequency-based Algorithm There are eight

normalized codes corresponding to each IRF instruction (except

J-Type) because the number of ways to choose the flag bits is

23 = 8. Finding the optimal combination of codes that maximizes

the number of IRF instructions executed or minimizes the size of

the modified program is too complex to complete in a practical

time. So we use a heuristic, which is basically similar to a greedy

algorithm that is used in the original IRF proposal when indirect

register specifiers are applied [14].

Figure 7 outlines the algorithm to prepare a list of codes and

the instructions corresponding to each code. An instruction profile

1: PROFILE ← instruction profile
2: INSTS ← empty associative array
3: for inst in PROFILE except nop do
4: for code in coding candidates(inst) do
5: if INSTS[code] does not exist then
6: INSTS[code]← empty array
7: end if
8: append inst to INSTS[code]
9: end for

10: end for

Fig. 7. Pseudocode of the preparation of code list.

1: IRF [0]← code for nop
2: for i in [1..31] do
3: find code that has the highest frequency of INSTS[code]
4: flags← code[35..32]
5: def inst← most frequent instruction in INSTS[code]
6: IRF [i]← bit concat(flags, def inst)
7: for inst in INSTS[code] do
8: for candidate in coding candidates(inst) do
9: remove inst from INSTS[candidate]

10: end for
11: end for
12: end for

Fig. 8. Pseudocode of the frequency-based instruction selection
[16].

(PROFILE) may be gathered by static analysis or dynamic

profiling. Each instruction in the PROFILE has its occurrence

rate. The function coding candidates (in line 4) gives a set of

all normalized codes for the corresponding instruction. After the

preparation, INSTS[code] stores all instructions that belong to

code with their occurrence rates.

The algorithm of the ‘frequency-based’ selection of IRF entries,

which has been proposed in [16], is shown in Figure 8. The function

bit concat (in line 6) returns the bit concatenation of the inputs.

The process of generating IRF contents is as follows. Since the

entry 0 is reserved for nop (line 1), the main loop determines the

31 most common codes, rather than 32. In the main loop, it first

finds the code whose sum of frequency is the highest in INSTS, that

is, the most frequent code (line 3). Then it sets the most frequent

instruction in the code as a default one, which is stored in the

IRF (lines 4 through 6). As a result, default instructions, which

are referenced without a parameter, come to be extracted by setting

param in Figure 6 to zero. Lastly the instructions in the selected

code are excluded from the corresponding lists (lines 7 through 11).

This exclusion may be skipped in the last iteration.

4.2. Score-based Algorithm The frequency-based

algorithm, presented in Section 4.1, aims at maximizing the sum of

the occurrence rates of IRF-resident instructions. However, it does

not care whether the listed instructions require parameters or not; a

frequently used instruction may be accessed with a parameter as a

result of being merged with another instruction that appears more

frequently.

Figure 9 depicts an example where the frequency-based

algorithm performs poorly. Assume that we are going to select

5 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



N. FUJIEDA AND S. ICHIKAWA

��������������	

���������	
��
���

�������
���
��	

���������	
������

��������������	

���������	
�����

�����������
��	

���������	
�����

�����������
��	�

������������������

��������������	�

���������������

��������������	

���������	
��
���

�������
���
��	

���������	
������

��������������	

���������	
�����

�����������
��	

���������	
�����

��������	�������������������	����������������������	 ���������������
��	�


��������������	

���������	
��
���

�������
���
��	

���������	
������

��������������	

���������	
�����

�����������
��	

���������	
�����

� ����������������������������
��	 ��������� ������������
��	



�!��������� �����"��������������


��������"��������������

Fig. 9. An example instruction profile with which the frequency-
based algorithm will not work efficiently.

1: IRF [0]← code for nop
2: SELECTED ← empty array
3: for i in [1..31] do
4: find code that has the highest

score(INSTS[code], SELECTED)
5: add INSTS[code] to SELECTED
6: flags← code[35..32]
7: def inst←most frequent instruction in INSTS[code]

8: IRF [i]← bit concat(flags, def inst)
9: for candidate in coding candidates(def inst) do

10: remove inst from INSTS[candidate]
11: end for
12: end for

Fig. 10. Pseudocode of the score-based instruction selection.

two entries from four instructions: addiu $2, $2, 1, addiu

$3, $3, 1, addiu $4, $4, 1, and addiu $2, $3, 1.

Their respective occurrence rates are 1600, 1200, 100, and 100.

When no parameterization is applied, two frequent instructions

are selected and thus the sum of the occurrence rates is 2800.

If we select with the frequency-based algorithm, addiu $P,

$P, 1 is selected as the first entry with a default P of 2.

Since the instructions corresponding to addiu $P, $P, 1 are

removed from consideration, the remaining addiu $2, $3, 1

is selected as the second entry. Thus the selection result is shown in

the middle of Figure 9. The sum of the occurrence rates increases to

3000. However, there is obviously a better selection for the second

entry of addiu $P, $3, 1 with a default P of 3, shown in the

bottom of Figure 9. While the sum of the occurrence rates of all IRF

instructions does not differ, that of parameter-free IRF instructions

significantly increases from 1700 to 2800.

The problem of the frequency-based algorithm resides in that

an instruction selected as a parameterized IRF instruction is not

reconsidered any more. It is also important that a parameterized

IRF instruction becomes parameter-free one, though the benefit of

such a promotion is smaller than the advantage to make a non-IRF

instruction IRF-resident.

1: score← 0
2: for inst in INSTS[code] do
3: freq ← frequency of inst
4: if inst is the most frequent in INSTS[code] then
5: score← score+ freq × 22
6: end if
7: if inst is not included in SELECTED then
8: score← score+ freq × 5
9: end if

10: end for

Fig. 11. Pseudocode of the calculation of score.

With consideration of the promotion of IRF instructions, we

propose a modified, ‘score-based’ algorithm shown in Figure 10.

The differences of the score-based algorithm from the frequency-

based one are threefold:

• it keeps a set of instructions that have been already selected

as IRF instructions to an array SELECTED,

• it selects a code based on the score calculated from the

occurrence rates and whether the corresponding instructions

exist in SELECTED, rather than the sum of the

occurrence rates, and

• the target of the exclusion is reduced to parameter-free IRF

instructions.

Figure 13 shows the algorithm to calculate the score. It is

calculated as the sum of the product of the occurrence rate and the

following weighting factor:

• 22 points when a non-IRF instruction becomes a parameter-

ized IRF instruction (because a 32-bit expression is reduced

to 10 bits),

• 5 points when a parameterized IRF instruction promotes to

parameter-free (because a 10-bit expression is reduced to 5

bits),

• 27 points when a non-IRF instruction becomes a parameter-

free IRF instruction (the sum of above), or

• 0 points otherwise.

The above mentioned weights are purely based on heuristics:

they correspond to the potential reduction of instruction length to

be fetched and it is not considered how instructions are likely to be

packed. It is left for future studies to find the optimal set of weights.

In the example of Figure 9, the score-based algorithm has four

major candidates for the selection of the second entry: choosing

each of the instructions separately other than addiu $2, $2,

1 or choosing addiu $P, $3, 1. The score for each selection

is as follows:

• addiu $3, $3, 1: Since it has been already a parame-

terized IRF instruction, the score is 1200× 5 = 6000.

• addiu $4, $4, 1: The score is 100× 5 = 500, calcu-

lated as the same way as above.

• addiu $2, $3, 1: It is not an IRF instruction yet, thus

the score is 100× 27 = 2700.

6 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



AN XOR-BASED PARAMETERIZATION FOR INSTRUCTION REGISTER FILES

• addiu $P, $3, 1: It gets 1200× 5 = 6000 points for

the promotion of addiu $3, $3, 1 and 100× 22 =

2200 points for the selection of addiu $2, $3, 1.

Therefore the total score is 6000 + 2200 = 8200.

Finally, addiu $P, $3, 1 is selected as the second entry and

the result is correspond to the bottom of Figure 9.

5. Evaluation

In this section, we compare the parameterization methods

through evaluations. In respect of the efficiency, two scales

are measured: the dynamic frequency of IRF instructions being

executed and the decrease in the number of instruction fetches

from the cache. The former scale corresponds to the chance of the

instruction packing and the latter means how efficient the packing

actually is. In respect of the hardware overhead, we evaluate the

hardware amount and the maximum frequency of circuits when we

implement the methods on an FPGA.

5.1. Methodology We use all of the 36 benchmarks of

MiBench [18] and make the instruction profiles from the traces of

them. To get the traces, we use a modified version of SimMips

version 0.7.5 [19]. The benchmarks are compiled with gcc 4.7.3,

uClibc 0.9.33.2, and binutils 2.21. The instruction set examined is

MIPS32 Release 1 with floating point instructions. The compile

options are the same as the defaults of MiBench except asserting

a flag for static linking (-static). Some programs are slightly

modified to remove the compile errors due to the difference of

compiler versions.

In this section, we define four settings as follows:

• No Param stands for the IRF without any parameterization.

It is referred to for a baseline of efficiency.

• Conventional applies the existing techniques that have been

described in Section 2.

• Frequency utilizes the XOR-based parameterization along

with the frequency-based instruction selection. This is the

same as what we have proposed in [16].

• Score combines the XOR-based parameterization with the

score-based instruction selection.

In the evaluation, there are three major limitations in instruction

packing because of the selection of ISA or the ease of the

calculation. First, some R-Type instructions that require both rs and

shamt fields cannot be transformed into loosely packed instructions.

Most of them are floating point instructions [17]. Second, some I-

Type instructions are unable to express their immediate values in

11 bits (See Figure 1). It will cause the addition and modification of

instructions and thus decreases the efficiency of instruction packing.

However, we do not consider it because it is equally applied to all

of the settings. Lastly, we do not attempt to perform an iterative

instruction packing. Packing may shorten the distance to the target

in a branch and then some of the modified branch may be included

��

���

���

���

���

���

���

	��


��

���

����

�
�
�
�
�
��
�	

�
�


�
�
��
��
�

��
	
��
�
��



��
��
�
��
�
�
�
�

��
�
�

������������	
��

���

�
������ �
������
��� ��������� ��
��

Fig. 12. Improvement in dynamic frequency of IRF instructions.
Light bars represent IRF instructions with non-default parameters.

���

���

��

��

��

��

��

���

���

���

���

�
�
�
�
�
�
��
	

�
	

�
�
�

	
�
�


�
�

�
�

�
�
��
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�

������������	
��

���

	
��
���
���

��
��
���

��
�


Fig. 13. Reduction in the number of instruction fetches. All values
are relative to No Param.

by the IRF instructions. Though it slightly improves the efficiency

of merging techniques, we think that the chance of improvement is

small because it equally applies to all of them.

5.2. Dynamic Frequency Figure 12 shows the dynamic

frequency of IRF instructions being executed. The X-axis is

the name of a group of MiBench. The Y-axis is the average

of the dynamic frequency in the group. The rightmost average

bars stand for the average frequency of all the applications. The

dark bars represent coverage of the default (parameter-free) IRF

instructions. The XOR-based parameterization with the score-based

selection (Score) improved the average frequency by 20.2% (or

11.2 percentage points) over the techniques in the original IRF

proposal (Conventional). In particular, in the 7 traces of the Security

benchmark group, the improvement was as much as 46.7% (or 22.0

points) on average.

We think that there are two reasons why the Security

benchmarks fit in our method. One is their high proportions of bit

operations. Most of them have the R-Type format, which cannot

be parameterized in the previous methods. The other is their large

number of registers used in loops. Our method can absorb the

difference in register numbers. Therefore it succeeded in merging

many instructions into a few IRF entries.

Comparing the selection algorithms, we observed that Score

improved the rate of parameter-free IRF instructions by 7.0% or

7 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



N. FUJIEDA AND S. ICHIKAWA

�������������	
�����

���������
����
���

�����������������
��

�������������	
�����

������������������

�����������������
��

�������������	
�����

������������������

�����������������
��

������������
����

�����������	 
���
������������

����������
���������
������

����������
������	
������
���

����������
�����
�����
����

����������
����������
������
��

�

�

�

�

����	��
�����
	�

�������
���
����

����������

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 14. The difference in instruction packing in the rijndael
benchmark.

3.2 points over Frequency. The rate of all IRF instructions was also

improved by 0.5% or 0.3 points over Frequency. It is regarded that

this benefit comes from keeping parameterized instructions under

consideration.

5.3. The number of instruction fetches Figure 13

shows the reduction in the number of instruction fetches over No

Param. The X-axis is the same as that of Figure 12. The Y-axis is

the average decrease of the number of instruction fetches from the

L1 cache. Frequency and Score reduced the number of fetches by

4.8% and 6.3% over Conventional, respectively.

In the Security benchmarks, our method showed remarkable

decrease of fetches (12.8% and 12.9% in Frequency and Score,

respectively), just as the increase of the dynamic frequency of

IRF instructions being executed. The number of continuous IRF

instructions in major loops was drastically increased there. For

example, Figure 14 shows the difference in instruction packing of

a part of the AES encryption routine in the rijndael benchmark,

along with the contents of the IRF in both Frequency and Score. The

conventional method did not utilize the similarities of instructions,

though some instructions were loosely packed. With our methods,

most of the instructions in the routine were retrieved from the

IRF and were compressed into tightly packed instructions. In this

example, triplets of sll, addu, and addiu were merged into their

respective IRF entries and the remaining lwwas also included in the

IRF. As a result, these 10 MIPS instructions were compressed into 4

tightly-packed instructions with our methods, while they were only

shortened into 8 instructions in the conventional method.

In Automobile and Network benchmark groups, while Frequency

negatively affected the number of fetches (increased by 0.4% and

3.4% over Conventional, respectively), Score successfully reduced

it (by 5.4% and 0.2%, respectively). This negative effect with

Frequency comes from the decrease of the packing efficiency by

parameterized instructions. Figure 15 shows the difference among

Conventional, Frequency and Score in instruction packing of the

�������������	�
��

���������
���	�
��

������������������



��������
���	�
��


������������	�
��

��������
����
���


�����������������

��������
����
���


�����������	 
���
����

�

�

�

�

�

�����

�

�

������������
����������
����


�����������������	������
���


����������������	������
���

��������������������������	����
 ����

�

�

�

�

����	��
�����
	�

�������������

��������������!"����#	����
$�%��
��

�������
����
����

������������	���


�����������	�
��

�

��

��

��

�������	
����
����
�����	�����������	������
	��������
���
����

Fig. 15. The difference in instruction packing in the qsort
benchmark.

most frequently executed loop in the qsort benchmark. Also, a

part of the contents of the IRF in Score is shown in the bottom

of Figure 15. In Conventional, all the instructions were referenced

without parameters and the number of required fields in the loop

was 8. The loop became only two tightly packed instructions. In

Frequency, however, some instructions got to require parameters

as a result of merging a pair of addiu, lbu, and sb, where the

number of required fields became 11. Consequently, Frequency

decreased the efficiency of packing in this case. In Score, the

pairs of instructions that had been merged in Frequency were

separated again by the addition of entries. All the instructions

became parameter-free again. As a result, the negative effect of

Frequency was cancelled and the number of required fields returned

to 8. Since the original IRF proposal relies on a greedy algorithm

[14], such an unnecessary merge may also occur in Conventional;

however, in this evaluation, it avoided the problem simply because

it failed to find the similarities of instructions.

An important difference of the score-based algorithm with

the others is that it only succeeded in reducing the fetches in

all applications. This result implies that an advantage of the

score-based algorithm resides in its conservative selection for the

applications such as qsort where the benefit of the parameterization

is small.

5.4. Hardware Overhead This section examines the

overhead of hardware amount and operating frequency of the

parameterization methods by implementing a soft processor with an

IRF on a Xilinx FPGA. We chose the latest snapshot of Plasma [20]

(as of September 2013) as the target processor. When an instruction

is fetched, it is translated with the IRF before it is saved in pipeline

registers. To focus on the overhead that comes from the IRF and its

parameterization, we do not consider instruction packing. Normal

MIPS instructions are transformed to specialized instructions (with

8 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



AN XOR-BASED PARAMETERIZATION FOR INSTRUCTION REGISTER FILES

Table I. The results of FPGA implementations of Plasma with the IRF.

Original No Param Conventional Proposed
Slices 1,981 2,054 2,093 2,064
- Registers 612 587 587 587
- 4-input LUTs 3,765 3,889 3,968 3,912
Block RAMs 5 5 5 5
Maximum Frequency [MHz] 34.988 36.117 35.469 34.381

��

��

��

���

���

���

���

�
�
�
�
��
��
	

�
	

�
�
�

	
�
�


�
�

�
�

�
�
��
�
�
�

��
�
�

�
�
�
��
�
��

������������	
��

���

�	
���

�	
����

�
���
���

Fig. 16. Comparison of reduction in the number of instruction
fetches with large IRFs. All values are relative to NP(32).

a 5-bit index of the IRF and, if needed, a 5-bit parameter) on a one-

to-one basis.

We evaluate four implementations: Original (the original

Plasma), No Param, Conventional, and Proposed (XOR-based

parameterization regardless of selection algorithm). All these

were synthesized and implemented with Xilinx ISE 14.6. Logic

synthesis is optimized for speed. The implementation options are

ParHighEffort (ISE 14) preset with ignoring timing constraints

(-x). Plasma is configured to have ‘2-stage’ pipeline (the actual

pipeline depth is 4), DRAM controller, 4 kiB instruction/data cache,

and 4 kiB internal memory. The system operation with a modified

processor was verified on the Xilinx Spartan-3E Starter Board.

The evaluation results are summarized in Table I. While the

addition of the IRF itself consumed 73 slices (basic units of

hardware amount in Xilinx FPGAs), Conventional required 39 more

slices, though it would be reasonable given that the immediate table

is about a half as large as the IRF. On the other hand, Proposed

required only 10 slices, which was much smaller than Conventional

as we have expected in Section 3.2. In respect of the maximum

frequency, it somehow improved with the addition of the IRF

(from Original to No Param) and it declined by a few percent

in Proposed. We think that this result was within the margin of

error in implementation because there was little difference among

the implementations in the estimated frequency reported after logic

synthesis.

6. Discussion

6.1. Comparison with a Large IRF This section

examines whether our parameterization scheme has a greater merit

than simply enlarging the IRF. A discussion about the number of

entries in the IRF has already been made in [14]. The use of a

large IRF increases the number of instructions covered by it but

decreases the potential packing efficiency (the maximum number

of instructions that a tightly packed instruction contains). Thus the

number of fetches with a large IRF may be decreased, or may be

increased. On the other hand, when we apply parameterization, the

coverage will be unchanged or increased and the potential packing

efficiency will remain the same. Therefore the number of fetches

with parameterization will be decreased or, at worst, unchanged.

We describe quantitative evaluation results of the fetch reduction

with large IRFs in this section. We evaluate the four architectural

settings, abbreviating No Param to NP.

• NP (32): is the same as No Param in Section 5.

• NP (64): uses a 64-entry IRF without parameterization. The

most frequent 32 entries can be referenced from loosely

packed instructions. Since 6 bits are required for an index,

a tightly packed instruction contains up to four MIPS

instructions.

• NP (128): uses a 64-entry IRF without parameterization. The

same restriction as NP (64) is applied to loose packing. Since

an index needs 7 bits, a tightly packed instruction includes

up to four instructions only when the first instruction to be

packed is in the most frequent 32 instructions; otherwise, it

only packs up to three instructions.

• Score (32): is the same as Score or Proposed in Section 5.

The restrictions of tight packing in NP (64) and NP (128) are based

on the fact that the opcode field of MIPS is 6 bits wide.

Figure 16 shows the results of the fetch reduction. All values are

relative to NP (32). By increasing the number of IRF entries, the

number of fetches reduced in most cases owning to the increase of

the frequency of IRF instructions executed. The only exception was

Telecomm from NP (64) to NP (128), where the effect of decline in

the potential packing efficiency was large. Though the enlargement

of the IRF affects the fetches differently from parameterization, on

average, Score (32) exhibited slightly more reduction in the number

of fetches (7.7%) than NP (64) (7.6%)).

Our parameterization achieved almost the same efficiency as a

64-entry IRF with smaller hardware overhead (about a quarter of

a 32-entry IRF, as we have shown in Section 5.4). At least, our

9 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



N. FUJIEDA AND S. ICHIKAWA

����
����

��� �� �

�� ���� �� �� �

�	
�	��
��	������
��	�
���	����	
	��
��	���
��	
�����	������	����	
�	���
����

����������	
��	�����

���������
���� ����
����

������ 	 �

�� �� �� �� �

� ���� ��
� 


��
�	
��	!���� ����
����

� �

�� �� �� �

��� 
 � �

��

"�
��� ����
���� �

��� �

���


#���
��$�

#%% ��

#%% ��

�� ��

�� ��

�� ��

Fig. 17. Formats of primary ARM instructions [23]. Parameteriz-
able fields are enclosed by dotted lines.

proposal is more beneficial than simply increasing the number of

entries to 64. When we use the IRF for the reduction of fetch energy,

we can use the parameterization along with a large IRF to balance

the packing efficiency with the energy per reference, considering

the fact that a large IRF consumes more energy. By doing this, we

may enjoy another benefit of the parameterization that a parameter

is always 5 bits wide regardless of the number of entries.

6.2. Feasibility Study of the IRF on Other ISA As

a method to improve the information density, the IRF can shorten

instructions that are actually frequently used. The length of machine

code for a specific program is different for each ISA. For example,

an ARM code is usually shorter than the corresponding MIPS code

[21]. In addition, as we have seen in Section 1, MIPS16 [8] and

Thumb-2 [10] assign shorter codings to the instructions that are

likely to be frequently used. However, they cannot consider the

actual frequency distribution of programs, which the IRF can do.

Important properties for the IRF to be applied to other ISAs

are the bias of frequency of each instruction and the similarity of

instruction formats. RISC ISAs such as MIPS and ARM may meet

both of them, while CISC ISAs like IA-32 do not meet the latter

property.

We evaluate the feasibility of the IRF on ARM using binaries

compiled for ARM. Benchmarks and evaluation environments are

the same as we shown in Section 5.1, except that the target processor

is Cortex-A9 (which has ARMv7-A ISA) and that the simulator to

obtain traces of the benchmarks is a modified version of QEMU

version 1.7.0 [22].

The changes to adapt our parameterization to ARM are as

follows. Each parameter has 4 bits. The parameterizable fields are

condition (Bits 31–28), register numbers (Bits 19–16 and Bits 15–

12), and an additional register number or a part of immediate value

(Bits 3–0). Figure 17 depicts some ARM instruction formats [23]

and the parameterizable fields. An instruction with a reserved code

in the condition field is regarded as a tightly packed instruction.

Since it requires 3 bits to determine the type of tightly packing (see

Figure 1), the use of the remaining 25 bits is the same as we do in

MIPS.

To adapt the conventional parameterization, we select most

common thirty-two 12-bit operands or offsets in arithmetic, logic,

��

���

���

���

���

���

���

	��


��
 ��


�
�
�
�
�
��
�	

�
�


�
�
��
��
��

��
	
��
�
��



��
��
�
��
�
�
�
�

��
�

�����������	
������
�

�������� ������������ 
����

��

��

���

���

���

���

���

���

���

���


��
 
��


���� �

��


�
�
�


��
��
�
��
�
��
�
�
��


�
�
�

�
�
��

	
�
��
�
�
��
�

�
�
��
�

�
�
��
�
��

�����������	
������
�

Fig. 18. Comparison of the coverage of the IRF and the fetch
reduction from the original ISAs between MIPS and ARM.

load, and store instructions for the immediate table. Branch offsets

are also parameterized using sign extension.

Architectural settings that we examine here are as follows.

• MIPS applies both loose and tight packing in MIPS.

• MIPS w/o LP applies only tight packing in MIPS. It only

affects the instruction packing (i.e. the number of instruction

fetches). It is evaluated for comparison.

• ARM applies only tight packing in ARM. The adaptation of

loose packing is left for future work.

Figure 18 shows the dynamic frequency of IRF instructions being

executed (in the left graph) and the reduction of the number of

instruction fetches over the original ISAs where the IRF is not

applied (in the right graph). Each bar corresponds to the setting

for the parameterization which we have shown in Section 5.1. Like

Figure 12, dark and light bars in the left graph mean parameter-

free and parameterized instructions, respectively. In terms of the

frequency of IRF instructions executed, about 4 percentage points

of the decrease was observed in the all three parameterization

settings from MIPS to ARM, while the improvement by the

parameterization was almost the same between them. In terms of the

fetch reduction, it was declined by about 8 points in No Param and

Conventional, from MIPS to MIPS w/o LP or ARM, because of the

absence of loose packing. However, the improvement by our score-

based parameterization (Score) greatly differed between MIPS w/o

LP and ARM: it was 8.0 points in MIPS w/o LP and 3.6 points

in ARM. We think that the difference in the fetch reduction comes

from the difference in the average length of basic blocks. According

to static analysis of the benchmarks, MIPS has 8.33 instructions

per basic block on average, while ARM has only 4.80 instructions.

Instruction packing may have been restricted by boundaries of basic

blocks.

We leave optimization of instruction packing as future work,

including the adaptation of loose packing and a branch into a packed

instruction. Nevertheless, the results of the evaluation in this section

imply sufficient possibility about the portability of the IRF.

10 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



AN XOR-BASED PARAMETERIZATION FOR INSTRUCTION REGISTER FILES

6.3. Concerns for the Purpose of Obfuscation As

we have mentioned in Section 2.1, the IRF can also be used

for obfuscation of instruction sequences [7, 15]. From the

cryptographic point of view, as the obfuscation with the IRF

relies on substitution ciphers, we should try to prevent the original

instruction sequences from being guessed by frequency analysis

[24]. Specifically, the distribution of indices of the IRF should be

flat so that as little information as possible can be obtained from

the statistical properties of the obfuscated sequences. Therefore not

only the coverage of the IRF but also the flatness of the distribution

of IRF indices should be considered [7].

Similarly, with the parameterization, the flatness of the

distribution of parameters is an important property. In our XOR-

based parameterization, two techniques can be applied to flatten the

distribution. First, if no parameterization flags are asserted in an IRF

entry (i.e. the entry corresponds to a single instruction), an arbitrary

parameter can be added to a reference to it. Second, even though

parameterization flag is (flags are) asserted in an entry, the set of

parameters can be shuffled to some extent by choosing another

one of 32 equivalent pseudoinstructions (as we have mentioned in

Section 3.1). As a result, little information will be obtained from the

flattened distribution of parameters, though there remains a certain

correlation between indices and parameters.

As well as what we have done in Section 4, we have proposed

an algorithm to find a sub-optimal set of instructions for the

IRF-based obfuscation [7]. A challenge in adapting the algorithm

to the parameterization is the consideration of the case that the

merge of instructions reduces the flatness of the distribution of

parameters. When multiple instructions are merged into a single

pseudoinstruction, the coverage of the IRF becomes large as other

(pseudo)instructions will come to be stored in the IRF. However,

arbitrary parameters will not be selected any more after the

instructions are merged: the parameters of the instructions will

come to be mutually dependent. This may increase the correlation

between indices and parameters and thus make frequency analysis

easier. We should decide whether or not to merge instructions based

on the balance between the coverage of the IRF and the flatness of

the distribution of indices and parameters. We leave the design of

an actual algorithm as future work.

7. Conclusion

This work proposed an XOR-based parameterization of

instructions which efficiently utilizes the limited capacity of the

IRF to reduce the power consumption of instruction fetch logic.

According to our evaluation results, if we carefully select IRF

entries with the score-based algorithm, 20.2% more instructions

were fetched from the IRF, the number of instruction fetches

was decreased by 6.3% compared to the previously proposed

parameterization.

The following items are left for future studies. First of all, the

power consumption of instruction fetch should be investigated more

precisely. It is also important to further evaluate the efficiency and

the cost of our scheme on other ISAs such as ARM. To apply the

parameterization to the obfuscation of instruction sequences, new

algorithms to construct the contents of the IRF are required.

References

(1) Montanaro J, et al.. A 160-MHz, 32-b, 0.5-W CMOS RISC micropro-
cessor. IEEE Journal of Solid-State Circuits 1996; 31(11):1703–1714.

(2) Thekkath DLC, Mitchell M, Lincoln P, Boneh D, Mitchell J, Horowitz
M. Architectural support for copy and tamper resistant software.
Proceedings of the 9th international conference on Architectural
support for programming languages and operating systems, 2000;
168–177, doi:10.1145/378993.379237.

(3) Suh GE, Clarke D, Gassend B, van Dijk M, Devadas S. AEGIS:
architecture for tamper-evident and tamper-resistant processing.
Proceedings of the 17th annual international conference on
Supercomputing, 2003; 160–171, doi:10.1145/782814.782838.

(4) Barrantes EG, Ackley DH, Forrest S, Stefanović D. Randomized
instruction set emulation. ACM Transaction on Information and System
Security 2005; 8(1):3–40, doi:10.1145/1053283.1053286.

(5) Kc GS, Keromytis AD, Prevelakis V. Countering code-injection
attacks with instruction-set randomization. Proceedings of the 10th
ACM conference on Computer and communications security, 2003;
272–280, doi:10.1145/948109.948146.

(6) Ichikawa S, Sawada T, Hata H. Diversification of processors based on
redundancy in instruction set. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences 2008; E91-
A(1):211–220, doi:10.1093/ietfec/e91-a.1.211.

(7) Fujieda N, Ichikawa S. Enhanced Instruction Register Files
for Embedded Software Obfuscation. Proceedings of the 29th
International Conference on Computers and Their Applications, 2014;
153–158.

(8) Kissell KD. MIPS16: High-density MIPS for the Embedded Market.
Technical Report, Silicon Graphics MIPS Group 1997.

(9) Shrivastava A, Biswas P, Halambi A, Dutt N, Nicolau A. Compilation
framework for code size reduction using reduced bit-width ISAs
(rISAs). ACM Transaction of Design Automation Electronic System
2006; 11(1):123–146, doi:10.1145/1124713.1124722.

(10) Phelan R. Improving ARM Code Density and Performance. Technical
Report, ARM Ltd. 2003.

(11) Kin J, Gupta M, Mangione-Smith WH. The filter cache: an energy
efficient memory structure. Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, 1997; 184–193.

(12) Lee LH, Moyer B, Arends J. Instruction fetch energy reduction
using loop caches for embedded applications with small tight loops.
Proceedings of the 1999 international symposium on Low power
electronics and design, 1999; 267–269, doi:10.1145/313817.313944.

(13) Banakar R, Steinke S, Lee BS, Balakrishnan M, Marwedel P.
Scratchpad memory: design alternative for cache on-chip memory in
embedded systems. Proceedings of the tenth international symposium
on Hardware/software codesign, 2002; 73–78, doi:10.1145/774789.
774805.

(14) Hines S, Green J, Tyson G, Whalley D. Improving Program Efficiency
by Packing Instructions into Registers. Proceedings of the 32nd annual
international symposium on Computer Architecture, 2005; 260–271,
doi:10.1109/ISCA.2005.32.

11 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls



N. FUJIEDA AND S. ICHIKAWA

(15) Chang D, Hines S, West P, Tyson G, Whalley D. Program
differentiation. Proceedings of the 2010 Workshop on Interaction
between Compilers and Computer Architecture, 9, 2010, doi:10.1145/
1739025.1739038.

(16) Fujieda N, Ichikawa S. An XOR-based approach to merging entries
for instruction register files. Proceedings of the 1st International
Symposium on Computing and Networking – Across Practical
Development and Theoretical Research –, 2013; 332–337, doi:10.
1109/CANDAR.2013.60.

(17) Sweetman D. See MIPS Run Linux Second Edition. Morgan
Kaufmann, 2006.

(18) Guthaus M, Ringenberg J, Ernst D, Austin T, Mudge T, Brown R.
MiBench: A free, commercially representative embedded benchmark
suite. 2001 IEEE International Workshop on Workload Characteriza-
tion, 2001; 3–14, doi:10.1109/WWC.2001.990739.

(19) Fujieda N, Watanabe S, Kise K. A MIPS System Simulator SimMips
for Education and Research of Computer Science. IPSJ Journal 2009;
50(11):2665–2676.

(20) Rhoads S. Plasma – most MIPS I(TM) opcodes, http://

opencores.org/project,plasma.

(21) Weaver V, McKee S. Code density concerns for new architectures.
2009 IEEE International Conference on Computer Design, 2009; 459–
464, doi:10.1109/ICCD.2009.5413117.

(22) Bellard F. QEMU, a Fast and Portable Dynamic Translator.
Proceedings of 2005 USENIX Annual Technical Conference, 2005; 41–
46.

(23) ARM Limited. ARM7TDMI Technical Reference Manual Revision
r4p1 2004.

(24) Bauer FL. Decrypted Secrets: Methods and Maxims of Cryptology. 4th
edn., Springer, 2006.

Naoki Fujieda (Non-member) received his

D.E. degree in 2013 from the Department

of Computer Science of Tokyo Institute of

Technology. Since 2013, he is an assistant

professor of the Department of Electrical

and Electronic Information Engineering of

Toyohashi University of Technology. His research interests include

processor architecture, applied FPGA systems, embedded systems,

and secure processors. He is a member of IPSJ, IEICE, and IEEE.

Shuichi Ichikawa (Non-member) received his

D.S. degree in Information Science from the

University of Tokyo in 1991. He has been

affiliated with Mitsubishi Electric Corporation

(1991-1994), Nagoya University (1994-1996),

Toyohashi University of Technology (1997-

2011), and Numazu College of Technology (2011-2012). Since

2012, he is a professor of the Department of Electrical and

Electronic Information Engineering of Toyohashi University of

Technology. His research interests include parallel processing,

high-performance computing, custom computing machinery, and

information security. He is a member of IEEE, ACM, IEICE, and

IPSJ.

12 IEEJ Trans 00: 1–12 (2014)
Prepared using teeauth.cls

http://opencores.org/project,plasma
http://opencores.org/project,plasma

	1 Introduction
	2 Instruction Register File
	2.1 Overview
	2.2 Parameterized IRF entries
	2.3 Shortcomings of the existing parameterization

	3 XOR-based Parameterization
	3.1 Coding of IRF Instructions
	3.2 Difference in Hardware Organization

	4 Selection of IRF Instructions
	4.1 Frequency-based Algorithm
	4.2 Score-based Algorithm

	5 Evaluation
	5.1 Methodology
	5.2 Dynamic Frequency
	5.3 The number of instruction fetches
	5.4 Hardware Overhead

	6 Discussion
	6.1 Comparison with a Large IRF
	6.2 Feasibility Study of the IRF on Other ISA
	6.3 Concerns for the Purpose of Obfuscation

	7 Conclusion

