
Dept. Electrical and Electronic Information Engineering

Toyohashi University of Technology

Custom Computing Systems

Laboratory

March 2024

Shuichi Ichikawa, Prof.

ichikawa@tut.jp

Prof. Shuichi Ichikawa

• Computer Architecture
– Microprocessors, Parallel processors

• Custom computing
– Embedded systems, Co-processing

• Reconfigurable Computing
– FPGA, Hardware partial evaluation

• High Performance Computing
– Parallel Processing, Load Balancing

• Security
– Crypto-circuits, RNG, Secure system

– Information hiding, Digital signature

Performance

Tuning

Based on

M
et

h
o
d
s

A
p
p
li

ca
ti

o
n
s

Spectrum

• Hardware
– Reconfigurable computing systems

– Application-specific accelerators

– Embedded systems

– Secure systems

• Software / Application
– Parallel processing

– High Performance Computing

– Security of information and
systems

Hardware

Software

No border!

Custom Computing System

• When the performance of software is
unsatisfactory…
– Accelerate it by hardware implementation

– Very natural or commonplace

• There have been many implementations
– Signal processing, Image processing

– Symbolic computation, Database

– Scientific computing

• Not always successful !!

Why hardware is faster than

software?
• Software is executed by a processor (hardware)!

• Von-Neumann bottleneck
– Instructions are executed sequentially

• Hardwired sequence control
– No need to execute an instruction sequence

– Conditional branches limits the performance

• Parallel execution of arithmetic
– Physical parallelism (many units)

– Temporal parallelism (pipelining)

• More memory bandwidth
– Arbitrary number of memory banks

– Dedicated wires between units

– Dedicated memory units for operation

Processor

Memory

Inst.

Data

Merits of Custom Computing
(What are impossible with general purpose computers)

• Optimal arithmetic with optimal data type
– There are pre-defined data types in general computing

• 8-bit, 16-bit, 32-bit, 64-bit, IEEE single float, double float, …

– You can adopt arbitrary length of data in custom
computing

• Arbitrary expression of data (redundant form, etc.)

– Reduction of logic scale →More parallelism, more
performance

• Application-specific = fixed algorithm
– Reduction of resources: Arithmetic, Memory, Wire

– More parallelism

• More performance / cost

Problems of Custom Computing
(What are drawbacks of its merits)

• High cost for design and implementation
– You have to design and implement it by yourselves

– Much effort and time are required for design,
implementation, and debug.

– One-off means expensive; no cost reduction by
mass production

• General purpose system is very easy and cheap to adopt

• Long period for development
– General purpose hardware evolves very quickly

• Its cost also decreases rapidly

– Performance advantage is offset

Target of Custom Computing

• Custom computing system is `niche’
– Its function is limited. Its cost is higher than PC.

– It does not replace general purpose computers

– It is used for a limited variations of applications, where the
merits of custom computing pay for the drawbacks.

• Custom computing must realize something that
cannot be done by a general-purpose system
– Performance per energy consumption

– Real-time systems, Embedded systems

– Game, Virtual Reality, …

• Add-in or Accelerator to a general system
– Graphics board, GPU

Supports to Custom Computing

• FPGA (Field Programmable Gate Array)
– Is replacing traditional ASICs

• ASIC = Application Specific Integrated Circuits

– Can implement various circuit by downloading configuration
• Might be re-configured on-site

• Is suitable to implement one-off LSI

– General purpose, mass-produced part
• Produced by a cutting-edge process technology

• Reasonable performance at reasonable cost

• Rapid progress in CAD and PC technology
– Enabled to design an FPGA chip in a modest time

– Enabled to design a large system at a reasonable time and
cost

Background: Field Programmable

Gate Array (FPGA)

• Piles of RAMs and switches

• Suited for prototyping, one-off system for
a specific application

• Logic can be reconfigured on-site

図: © Xilinx, Inc.

Past Project: Custom Hardware for

Embedded and Control Applications

• Converts a PLC instruction sequence into logic circuit
– Co-operation with Yashima Netsugaku Corp. in Toyohashi City.

Perfect Layer Winder (prototype) FPGA controller demo

Shuichi Ichikawa, Masanori Akinaka, Hisashi Hata, Ryo Ikeda, Hiroshi Yamamoto: "An FPGA implementation of hard-wired

sequence control system based on PLC software," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 6, No. 4,

pp. 367--375 (2011).

Background: control application

• PLC (Programmable Logic Controller)
– A kind of computer

– Used for various sequence control applications

• Problems
– Performance

• Not fast enough for
large control systems

– Intellectual property
• PLC program is easy to

duplicate and to analyze
https://commons.wikimedia.org/wiki/File:A_series_PLC.jpg

Supposed System Configuration

• “Legacy” systems are
built with PLC

• Embedded processors
are not fast enough

• Custom circuit is
effective for hard real-
time control
– Automatic generation is

desired

• Converting PLC program
to hardware description

Hard Real-time

Part

Embedded

Processor

Internal

Memory
Bus

Various

I/O

User I/F,

Network, etc.

Control

Devices

DRAM
FPGA chip

NOT for ALL systems

Naoki Fujieda, Shuichi Ichikawa, Yoshiki Ishigaki, Tasuku Tanaka: "Evaluation of the hardwired sequence control system

generated by high-level synthesis," Proc. 26th IEEE International Symposium on Industrial Electronics (ISIE 2017), pp.

1261--1267 (2017).

Goal

PB1 PB2 Y01

Y01

PB1
PB2 Y01

equivalent

FPGA

• To implement PLC programs with FPGA

PLC

Small, fast, reliable,

low-cost, flexible,

resistant to

tampering and

duplication

LOD PB1

OR Y01

ANDN PB2

OUT Y01

Results

• Ladder program of productive industrial machinery

– 165 instructions (incl. 6 add/sub, 12 multiplication, and 9 division)

• TPLC : TSD = 76 : 1 , TPLC : TFD = 3380 : 1

0.E+00

5.E-06

1.E-05

2.E-05

2.E-05

3.E-05

3.E-05

0 2000 4000 6000 8000 10000

Logic scale [LE]

S
c
a
n
 t

im
e
 [

s
e
c
.]

SD dedicated SD shared x 1 LD dedicated

LD shared x 1 LD shared x 2 LD shared x 3

LD shared x 4 FD dedicated

AT product [LE sec.]

0.00 0.05 0.10 0.15 0.20

dedicated

shared x 1

dedicated

shared x 1

shared x 2

shared x 3

shared x 4

dedicated

S
D

LD
F

D

Shuichi Ichikawa, Masanori Akinaka, Ryo Ikeda, Hiroshi Yamamoto: "Converting PLC instruction sequence into logic

circuit: A preliminary study," Proceedings of 2006 IEEE International Symposium on Industrial Electronics (ISIE '06), pp.

2930--2935 (2006).

State of the art

• Design methodology
– Old: home-made converter (PLC inst. → HDL)

• Merits: fine control, good for evaluation

• Problems: much effort, tool support

– Now: C-based high-level synthesis

• Merits: commercial support, co-design, integration

• Problems: black box, difficult control

• Security
– Obfuscation: Software, Hardware

– Use of secure processor

Processor specialization by high-

level synthesis (HLS)

• HLS generates logic circuit from software (e.g., C language)

• Transform some part of software into hardware of processor
– Soft-processor is written in hardware description language; easy to use

– Tamper resistance: hardware is more difficult to analyze

– Processor can be customized on case-by-case basis

Kazuki Iwahara, Shuichi Ichikawa, Naoki Fujieda: "Evaluation of special instruction implementations in soft processors for

high-level synthesis," IEEJ Transactions on Industry Applications, vol. 143, no. 2, pp. 94--100 (2023). (in Japanese)

Software Hardware

Processor
Main

memory

Function A

Function B

Function C Function C

Secure Processor

• Analysis, plagiarism, tampering of software
– Leakage of trade secret, piracy of software

• Secure processor
– Supports software protection by hardware

– Example: encryption of memory image

• Diversification of processor
– If each processor uses different instructions, …

– Much suitable for FPGA implementation

0101110

1101011

1001110

0010011

...

!!

1110011

1011011

0001000

0100100

...

A + B x C...

0010110

0101100

1101100

1110111

...

A + B x C...

0111011

1111000

1010101

0010010

...

A + B x C...
Different machine

language for

different processors

Shuichi Ichikawa, Takashi Sawada, Hisashi Hata: "Diversification of Processors Based on Redundancy in Instruction Set," IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No.1, pp. 211--220 (2008).

Instruction Set Randomization

• If each processor has its unique ISA
– Binary software cannot be plagiarized.

– Analysis of software would be difficult.

– No unauthorized binary program
• No injection attack (e.g., viruses)

• If each processor has its unique ISA
– You have to design many processors

– You have to prepare many tools

– No portability of software

Example: MIPS ISA

• Use the same instruction format with different encoding

– R-type： ADD (op=0, funct=32)，SUB (op=0, funct=34)

– I-type： BEQ (op=4), BNE (op=5), LW (op=35), SW (op =43)

– J-type： J (op=2), JAL (op=3)

R-Type

I-Type

J-Type

opcode rs rt rd sa function

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt immediate

31 26 25 21 20 16 15 0

opcode Instr_index

31 26 25 0

Personalization of ISA

• Use unique encoding with the same format
– Use a separate definition file

– Build personalized ID units

• Economical implementation of randamization

IF

memory

ID

address

30bit

data

32bit

instruction

32bit

Definition File

for

Randomize

instruction code

Instruction

definistion

address

32bit

Plasma

(MIPS)

P0 P1

P2
P3

P4

P5

P6

personalities

Evaluation

0

500

1000

1500

2000

2500

Original Specialized RAM-

mapped

Bit-shuffle

SliceL SliceM

0

10

20

30

40

Original Specialized RAM-

mapped

But-shuffle

M
a

x
.
F

re
q

.
[M

H
z
]

• Low overhead
– Performance, Hardware resource

• High degree of freedom
– Possible to generate enough number of products of different ISA.

Shuichi Ichikawa, Takashi Sawada, Hisashi Hata: "Diversification of Processors Based on Redundancy in Instruction Set,"

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No.1, pp. 211--220

(2008).

Instruction Register File (IRF)

• Small instruction storage accessed by
indices of fetched instructions
– originally used for instruction compression

– can be applied for software obfuscation if the
content of the IRF is hidden [2]

[2] D. Chang et al.: Program Differentiation, in INTERACT-14 in conjunction with ASPLOS-XV,No. 9 (2010).

(part of instruction decode stage)

IRF

Instruction

Buffer

32

5

opcode
rs

shamt
rt rd funct inst2

opcode rs rt rd functshamt

R-Type MIPS Instruction

26 21 16 11 6 031

26 21 16 11 5 031

Naoki Fujieda, Tasuku Tanaka, Shuichi Ichikawa: "Design and Implementation of Instruction Indirection for

Embedded Software Obfuscation," Microprocessors and Microsystems, Vol. 45, Part A, pp. 115--128 (2016).

Information hiding,

Steganography

• Embed information into copyrighted materials

– E.g., software, 3D models

Avoid detection

Avoid deletion

Avoid modification

Embedding

Shuichi Ichikawa, Hiroshi Chiyama, Kazuhiko Akabane: "Redundancy in 3D Polygon Models and Its Application to Digital

Signature," Journal of WSCG, Vol. 10, No. 1, pp. 225--232 (2002).

Freedom in Instruction Sequence

• How many expressions of a program exist?

• Freedom f → Information log2f (bit)
– Equivalent instructions: sub (r  r – 1) , add (r  r + (-1))

– The address of a basic block

– The order of instructions in a basic block

– The address of global variables

– The allocation of registers to variables

Kazuhiro Hattanda, Shuichi Ichikawa: "The Evaluation of Davidson's Digital Signature Scheme," IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, Vol. E87-A, No. 1, pp. 224--225 (2004).

Random Number Generator
(a key component for security)

• Many application utilizes “random numbers”
– Simulations, games, …

• True Random Number Generator (TRNG)
– TRN is generated from various physical phenomena
→ unpredictable

• Thermal noise, metastability, jitter, …

– Dedicated hardware is essential.

• Pseudo-Random Number Generator (PRNG)
– Generated by a pre-determined algorithm and initial values
→ predictable

• Unpredictable RNG (URNG)
– Between TRNG and PRNG, practically unpredictable.

– Utilizes randomness (entropy) of the system

2024/3/8 Shuichi Ichikawa28

Ayumu Chiba, Shuichi Ichikawa: "Evaluation of Random Number Generator Utilizing Weather Data and LFSR," IEEJ Transactions on Industry Applications, vol.

143, no. 2, pp. 80--86 (2023).

Shuichi Ichikawa: "Pseudo-Random Number Generation by Staggered Sampling of LFSR," Proc. Eleventh International Symposium on Computing and Networking

(CANDAR 2023), pp. 134--140 (2023).

Hidetaka Masaoka, Shuichi Ichikawa, Naoki Fujieda: "Random Number Generation from Internal LFSR and Fluctuation of Sampling Interval," IEEJ Transactions on

Industry Applications, vol. 141, no. 2, pp. 86--92 (2021). (in Japanese)

Hisashi Hata, Shuichi Ichikawa: "FPGA Implementation of Metastability-based True Random Number Generator," IEICE Transactions on Information and Systems,

Vol. E95-D, No. 2, pp. 426--436 (2012).

Our web site

http://www.ccs.ee.tut.ac.jp/ich/

Information on

• Academic staffs

• Research themes

• Theses of past

under-graduates

and graduates

	スライド 1: Dept. Electrical and Electronic Information Engineering Toyohashi University of Technology Custom Computing Systems Laboratory
	スライド 2: Prof. Shuichi Ichikawa
	スライド 3: Spectrum
	スライド 4: Custom Computing System
	スライド 5: Why hardware is faster than software?
	スライド 6: Merits of Custom Computing (What are impossible with general purpose computers)
	スライド 7: Problems of Custom Computing (What are drawbacks of its merits)
	スライド 9: Target of Custom Computing
	スライド 10: Supports to Custom Computing
	スライド 11: Background: Field Programmable Gate Array (FPGA)
	スライド 12: Past Project: Custom Hardware for Embedded and Control Applications
	スライド 13: Background: control application
	スライド 14: Supposed System Configuration
	スライド 15: Goal
	スライド 16: Results
	スライド 17: State of the art
	スライド 18: Processor specialization by high-level synthesis (HLS)
	スライド 19: Secure Processor
	スライド 20: Instruction Set Randomization
	スライド 22: Example: MIPS ISA
	スライド 23: Personalization of ISA
	スライド 24: Evaluation
	スライド 25: Instruction Register File (IRF)
	スライド 26: Information hiding, Steganography
	スライド 27: Freedom in Instruction Sequence
	スライド 28: Random Number Generator (a key component for security)
	スライド 29: Our web site

