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• Computer Architecture
– Microprocessors, Parallel processors

• Custom computing
– Embedded systems, Co-processing

• Reconfigurable Computing
– FPGA, Hardware partial evaluation

• High Performance Computing
– Parallel Processing, Load Balancing

• Security
– Crypto-circuits, RNG, Secure system

– Information hiding, Digital signature

Performance

Tuning

Based on 

M
et

h
o
d
s

A
p
p
li

ca
ti

o
n
s



Spectrum

• Hardware
– Reconfigurable computing systems

– Application-specific accelerators

– Embedded systems

– Secure systems

• Software / Application
– Parallel processing

– High Performance Computing

– Security of information and 
systems

Hardware

Software

No border!



Custom Computing System

• When the performance of software is 
unsatisfactory…
– Accelerate it by hardware implementation

– Very natural or commonplace

• There have been many implementations
– Signal processing, Image processing

– Symbolic computation, Database

– Scientific computing

• Not always successful !!



Why hardware is faster than 

software?
• Software is executed by a processor (hardware)!

• Von-Neumann bottleneck
– Instructions are executed sequentially

• Hardwired sequence control
– No need to execute an instruction sequence

– Conditional branches limits the performance

• Parallel execution of arithmetic
– Physical parallelism (many units)

– Temporal parallelism (pipelining)

• More memory bandwidth
– Arbitrary number of memory banks

– Dedicated wires between units

– Dedicated memory units for operation
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Memory
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Data



Merits of Custom Computing
(What are impossible with general purpose computers)

• Optimal arithmetic with optimal data type
– There are pre-defined data types in general computing

• 8-bit, 16-bit, 32-bit, 64-bit, IEEE single float, double float, …

– You can adopt arbitrary length of data in custom 
computing

• Arbitrary expression of data (redundant form, etc.)

– Reduction of logic scale →More parallelism, more 
performance

• Application-specific = fixed algorithm
– Reduction of resources: Arithmetic, Memory, Wire

– More parallelism

• More performance / cost



Problems of Custom Computing
(What are drawbacks of its merits)

• High cost for design and implementation
– You have to design and implement it by yourselves

– Much effort and time are required for design, 
implementation, and debug.

– One-off means expensive; no cost reduction by 
mass production

• General purpose system is very easy and cheap to adopt

• Long period for development
– General purpose hardware evolves very quickly

• Its cost also decreases rapidly

– Performance advantage is offset



Target of Custom Computing

• Custom computing system is `niche’
– Its function is limited. Its cost is higher than PC.

– It does not replace general purpose computers

– It is used for a limited variations of applications, where the 
merits of custom computing pay for the drawbacks.

• Custom computing must realize something that 
cannot be done by a general-purpose system
– Performance per energy consumption

– Real-time systems, Embedded systems

– Game, Virtual Reality, …

• Add-in or Accelerator to a general system
– Graphics board, GPU



Supports to Custom Computing

• FPGA (Field Programmable Gate Array)
– Is replacing traditional ASICs

• ASIC = Application Specific Integrated Circuits

– Can implement various circuit by downloading configuration
• Might be re-configured on-site

• Is suitable to implement one-off LSI

– General purpose, mass-produced part
• Produced by a cutting-edge process technology

• Reasonable performance at reasonable cost

• Rapid progress in CAD and PC technology
– Enabled to design an FPGA chip in a modest time

– Enabled to design a large system at a reasonable time and 
cost



Background: Field Programmable 

Gate Array (FPGA)

• Piles of RAMs and switches

• Suited for prototyping, one-off system for 
a specific application

• Logic can be reconfigured on-site

図: © Xilinx, Inc.



Past Project: Custom Hardware for

Embedded and Control Applications

• Converts a PLC instruction sequence into logic circuit
– Co-operation with Yashima Netsugaku Corp. in Toyohashi City.

Perfect Layer Winder (prototype) FPGA controller demo

Shuichi Ichikawa, Masanori Akinaka, Hisashi Hata, Ryo Ikeda, Hiroshi Yamamoto: "An FPGA implementation of hard-wired 

sequence control system based on PLC software," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 6, No. 4, 

pp. 367--375 (2011).



Background: control application

• PLC (Programmable Logic Controller)
– A kind of computer

– Used for various sequence control applications

• Problems
– Performance

• Not fast enough for 
large control systems

– Intellectual property
• PLC program is easy to 

duplicate and to analyze
https://commons.wikimedia.org/wiki/File:A_series_PLC.jpg



Supposed System Configuration

• “Legacy” systems are 
built with PLC

• Embedded processors 
are not fast enough

• Custom circuit is 
effective for hard real-
time control
– Automatic generation is 

desired

• Converting PLC program 
to hardware description

Hard Real-time
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Naoki Fujieda, Shuichi Ichikawa, Yoshiki Ishigaki, Tasuku Tanaka: "Evaluation of the hardwired sequence control system 

generated by high-level synthesis," Proc. 26th IEEE International Symposium on Industrial Electronics (ISIE 2017), pp. 

1261--1267 (2017).



Goal
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Results

• Ladder program of productive industrial machinery

– 165 instructions (incl. 6 add/sub, 12 multiplication, and 9 division)

• TPLC : TSD = 76 : 1 ,  TPLC : TFD = 3380 : 1
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Shuichi Ichikawa, Masanori Akinaka, Ryo Ikeda, Hiroshi Yamamoto: "Converting PLC instruction sequence into logic 

circuit: A preliminary study," Proceedings of 2006 IEEE International Symposium on Industrial Electronics (ISIE '06), pp. 

2930--2935 (2006).



State of the art

• Design methodology
– Old: home-made converter (PLC inst. → HDL)

• Merits: fine control, good for evaluation

• Problems: much effort, tool support

– Now: C-based high-level synthesis

• Merits: commercial support, co-design, integration

• Problems: black box, difficult control

• Security
– Obfuscation: Software, Hardware

– Use of secure processor



Processor specialization by high-

level synthesis (HLS)

• HLS generates logic circuit from software (e.g., C language)

• Transform some part of software into hardware of processor
– Soft-processor is written in hardware description language; easy to use

– Tamper resistance: hardware is more difficult to analyze

– Processor can be customized on case-by-case basis

Kazuki Iwahara, Shuichi Ichikawa, Naoki Fujieda: "Evaluation of special instruction implementations in soft processors for 

high-level synthesis," IEEJ Transactions on Industry Applications, vol. 143, no. 2, pp. 94--100 (2023). (in Japanese)
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Secure Processor

• Analysis, plagiarism, tampering of software
– Leakage of trade secret, piracy of software

• Secure processor
– Supports software protection by hardware

– Example: encryption of memory image

• Diversification of processor
– If each processor uses different instructions, …

– Much suitable for FPGA implementation

0101110

1101011

1001110

0010011

...

!!

1110011

1011011

0001000

0100100

...

A + B x C...

0010110

0101100

1101100

1110111

...

A + B x C...

0111011

1111000

1010101

0010010

...

A + B x C...
Different machine 

language for 

different processors

Shuichi Ichikawa, Takashi Sawada, Hisashi Hata: "Diversification of Processors Based on Redundancy in Instruction Set," IEICE 

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No.1, pp. 211--220 (2008).



Instruction Set Randomization

• If each processor has its unique ISA
– Binary software cannot be plagiarized.

– Analysis of software would be difficult.

– No unauthorized binary program
• No injection attack (e.g., viruses)

• If each processor has its unique ISA
– You have to design many processors

– You have to prepare many tools

– No portability of software



Example: MIPS ISA

• Use the same instruction format with different encoding

– R-type： ADD (op=0, funct=32)，SUB (op=0, funct=34)

– I-type： BEQ (op=4), BNE (op=5), LW (op=35), SW (op =43)

– J-type： J (op=2), JAL (op=3)

R-Type

I-Type

J-Type

opcode rs rt rd sa function

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt immediate

31 26 25 21 20 16 15 0

opcode Instr_index

31 26 25 0



Personalization of ISA

• Use unique encoding with the same format
– Use a separate definition file

– Build personalized ID units

• Economical implementation of randamization
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Evaluation
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• Low overhead
– Performance, Hardware resource

• High degree of freedom
– Possible to generate enough number of products of different ISA.

Shuichi Ichikawa, Takashi Sawada, Hisashi Hata: "Diversification of Processors Based on Redundancy in Instruction Set," 

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E91-A, No.1, pp. 211--220 

(2008).



Instruction Register File (IRF)

• Small instruction storage accessed by 
indices of fetched instructions
– originally used for instruction compression

– can be applied for software obfuscation if the 
content of the IRF is hidden [2]

[2] D. Chang et al.: Program Differentiation, in INTERACT-14 in conjunction with ASPLOS-XV,No. 9 (2010).

(part of instruction decode stage)

IRF

Instruction

Buffer

32

5

opcode
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shamt
rt rd funct inst2

opcode rs rt rd functshamt

R-Type MIPS Instruction

26 21 16 11 6 031

26 21 16 11 5 031

Naoki Fujieda, Tasuku Tanaka, Shuichi Ichikawa: "Design and Implementation of Instruction Indirection for 

Embedded Software Obfuscation," Microprocessors and Microsystems, Vol. 45, Part A, pp. 115--128 (2016).



Information hiding, 

Steganography

• Embed information into copyrighted materials

– E.g., software, 3D models

Avoid detection

Avoid deletion

Avoid modification

Embedding

Shuichi Ichikawa, Hiroshi Chiyama, Kazuhiko Akabane: "Redundancy in 3D Polygon Models and Its Application to Digital 

Signature," Journal of WSCG, Vol. 10, No. 1, pp. 225--232 (2002).



Freedom in Instruction Sequence

• How many expressions of a program exist?

• Freedom f → Information log2f (bit)
– Equivalent instructions:  sub (r  r – 1) , add (r  r + (-1))

– The address of a basic block

– The order of instructions in a basic block

– The address of global variables

– The allocation of registers to variables

Kazuhiro Hattanda, Shuichi Ichikawa: "The Evaluation of Davidson's Digital Signature Scheme," IEICE Transactions on 

Fundamentals of Electronics, Communications and Computer Sciences, Vol. E87-A, No. 1, pp. 224--225 (2004).



Random Number Generator
(a key component for security)

• Many application utilizes “random numbers”
– Simulations, games, …

• True Random Number Generator (TRNG)
– TRN is generated from various physical phenomena
→ unpredictable

• Thermal noise, metastability, jitter, …

– Dedicated hardware is essential.

• Pseudo-Random Number Generator (PRNG)
– Generated by a pre-determined algorithm and initial values 
→ predictable

• Unpredictable RNG (URNG)
– Between TRNG and PRNG, practically unpredictable.

– Utilizes randomness (entropy) of the system

2024/3/8 Shuichi Ichikawa28

Ayumu Chiba, Shuichi Ichikawa: "Evaluation of Random Number Generator Utilizing Weather Data and LFSR," IEEJ Transactions on Industry Applications, vol. 

143, no. 2, pp. 80--86 (2023).

Shuichi Ichikawa: "Pseudo-Random Number Generation by Staggered Sampling of LFSR," Proc. Eleventh International Symposium on Computing and Networking 

(CANDAR 2023), pp. 134--140 (2023).

Hidetaka Masaoka, Shuichi Ichikawa, Naoki Fujieda: "Random Number Generation from Internal LFSR and Fluctuation of Sampling Interval," IEEJ Transactions on 

Industry Applications, vol. 141, no. 2, pp. 86--92 (2021). (in Japanese)

Hisashi Hata, Shuichi Ichikawa: "FPGA Implementation of Metastability-based True Random Number Generator," IEICE Transactions on Information and Systems, 

Vol. E95-D, No. 2, pp. 426--436 (2012).



Our web site

http://www.ccs.ee.tut.ac.jp/ich/

Information on
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• Research themes
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