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論　文　要　旨（修士）

論文題目 Generative Adversarial Networkと Linear Feedback Shift Registerを用いた乱数生成手法

乱数生成は，特にセキュリティ技術・暗号化技術・シミュレーションなどの分野において極めて重要で
ある．乱数には大きく 2種類が存在する．1つは真性乱数（TRN; True Random Number）で，物理現象
を利用するため将来値の予測は困難だが，専用ハードウェアが必要である．もう 1つは疑似乱数（PRN;

Pseudo Random Number）で，決定的アルゴリズムで生成されるため高速に生成できるが，アルゴリズム
や内部状態が推測された場合に予測が可能になる．
これらに加えて，PRNを拡張した Unpredictable Random Number（URN）と呼ばれる乱数が提案され

ている．URNは内部的には決定的アルゴリズムで動作するものの，外部エントロピー源を取り込むこと
で実質的に予測困難な乱数列を生成する．URNは TRNに近い性質を持ちながらも専用ハードウェアを
必要としない．千葉と市川 (2023)は風向データを用いて LFSRのサンプリング間隔に揺らぎを付与する
URN 生成法を提案したが，風向データは 1 時間に 1 サンプルしか得られないため，生成速度に制限が
あった．
本研究では，エントロピー源として気温データを用い，URN を生成する．使用したのは金沢市の 1

時間単位の気温観測データ 3 年間分である．日時と気温（0.1 ℃刻み）からなる時系列データを，その
特性に合わせて前処理及び離散化し，LFSR のサンプリング間隔を変動させるために用いた．評価には
DIEHARDテスト及び NISTテストを用いた．

DIEHARDテストでは，気温データの小数部分を利用する手法（Method2）及び気温変化量を利用する
手法（Method3）において，32-bit LFSRの基本サンプリング間隔が 32以上の条件で良好な結果が得られ
た．一方，より厳格な NISTテストは 32-bit LFSRでは合格できなかった．，48-bit及び 64-bitの LFSR

を用いた場合，気温変化量を用いる手法（Method3-Pattern1-mod4，Method3-Pattern2）が，初期値やタッ
プ設定を変更しても安定して合格した．
気温データの測定周期は 1 時間であり，風向データと変わらないので，エントロピー生成速度には

依然として制約がある．そこで本研究では，気象データと類似した性質をもつデータ列を Generative

Adversarial Networks（GAN）で生成した．GANは，生成器（Generator）と識別器（Discriminator）が
競合しながら学習を行うことで，高品質なデータを生成するモデルである．本研究では複数のモデルを構
築・比較し，最終的に最も高い生成精度が得られた RNN-CGAN（Recurrent Neural Networks Conditional

GAN）を採用した．学習には過去 12年分の気温データを使用し，生成された 3年分の疑似気象データ
を用いて URNを生成した．
その結果，DIEHARDテストにおいては実気温データと同様にMethod2及びMethod3を用いた場合に

良好な結果が得られた．NIST テストでも全体として類似した傾向が見られ，特に Method2，Method3-

Pattern2を用いた場合は 48-bit及び 64-bit LFSRの両方で安定して合格することを確認した．
今後の課題としては，気温データが持つ連続性や周期性をさらに除去し，より高いランダム性を有する

揺らぎを抽出する前処理手法の検討，及び GANによる疑似気象データ生成の精度向上が挙げられる．




