DATE: 2021/12/1

Department of Electrical and Electronic Information Engineering ID M183211
Supervisor | Shuichi Ichikawa
Name Kazuki Iwahara
Abstract
Title Re-evaluation of a dedicated instruction implementation method using high-level synthesis

High-level synthesis (HLS) is a technique that converts a behavioral description in a high-level language
such as C into an RTL description in a hardware description language. Skalicky et al. (2015) proposed
a method to generate a soft processor by high-level synthesis of an instruction set simulator written in C
language. Sakamoto et al. (2018) proposed a method to generate a soft processor, Spim-like_sp, based on
Skalicky et al.’s method by creating a high-level synthesizable MIPS instruction set simulator, Spim-like, and
implemented dedicated instructions for three CHStone benchmarks. In addition, Sakamoto et al. proposed
to use three types of reference passing when reference passing is used in the functions to be dedicated in-
structions. Iwamoto et al. (2019) proposed to enhance the number of applications from 3 to 11, and to select
functions implemented as dedicated instructions based on two selection criteria. Masanobu et al. (2020)
clarified the defects in Iwamoto et al.’s method of implementing dedicated instructions, and conducted per-
formance evaluation to show the effectiveness of using directives.

The purpose of this study is to re-evaluate the dedicated instruction implementation method with many
implementation patterns by fixing the defects pointed out by Masanobu. In this study, Vivado HLS 2020.1 is
used as the HLS tool, and Vivado 2020.1 is used as the logic synthesis tool.

First, in order to identify the implementation patterns that cause failures, we conducted a follow-up exper-
iment to the C simulation conducted by Masanobu et al. As a result, out of 39 implementation patterns with
different selection criteria for functions to be converted into dedicated instructions and different methods of
reference passing, 23 patterns were found to be faulty. As a result of the correction effort, the self-check val-
ues of 14 out of 23 implementation patterns became normal. We evaluated the performance of Spim-like_sp,
which was generated by 28 out of 30 implementation patterns whose self-check values were found to be
normal and which were successfully synthesized.

In the performance evaluation, we evaluated the trade-off using the AT product. The evaluation results
are shown as relative values between the evaluation results without dedicated instructions and those with
dedicated instructions. In the implementation pattern where the function selection criterion is execution time
priority, the average of the relative values of latency is 0.872, the average of the relative values of the number
of SLICE is 1.2, and the average of the relative values of the AT product is 1.01, indicating that there is
little impact on the performance of the soft processor. In the implementation pattern using ’spm_h” as the
reference pass, the average of the relative values of latency was 0.757, the average of the relative values of
the number of SLICE was 1.55, and the average of the relative values of the AT product was 1.27, indicating
that the impact on the performance of the soft processor was small.




