
DATE: 2019/1/8

Department of Electrical and Electronic Information Engineering ID M153206
Supervisor

Shuichi Ichikawa

Naoki FujiedaName Ryodai Iwamoto

Abstract

Title Evaluation of special instruction implementation methods by high level synthesis

Protection of intellectual properties such as procedures of software is an important issue. Hardware imple-

mentation of functions is a method to protect them. Meanwhile, soft-processors, written in HDL (Hardware

Description Language) are widely used in embedded systems. Sakamoto (2018) proposed to implement some

functions of software as special instructions of a soft processor generated from an instruction set simulator by

high level synthesis. However, the number of applications were too small (3 applications) to show its practi-

cability, and the criteria were not clearly declared to select the target functions to be special instructions.

In this research, Sakamoto’s method is applied to eleven programs of CHStone benchmark to examine

applicability of the method, and to present the difficulties and their solutions when applying the method. Also,

as a criterion for selecting a function, its processing time and code size are considered. The generated soft

processor is simulated and synthesized to confirm that a suitable circuit for each criterion can be generated.

One of the problems appeared in argument passing of 64-bit variables. In this case, the value of the

variable is stored in two MIPS general purpose registers. Therefore, it was necessary to change the description

accordingly to pass 64-bit arguments to the special instruction that corresponds to the target function. When

casting from pointer of memory which is an array of 32-bit variable to 64-bit pointer type, high level synthesis

failed. In this case, it must be accessed by two 32-bit pointers.

By converting functions of large processing time into special instructions, the overall execution time was

reduced by 33.0% on average. It was observed that the execution time increases by implementing a special

instruction, where a large array of arguments is transferred by hardware with SPM (scratch pad memory).

When the special instruction is implemented for the functions with large code size, the code size was reduced

by 9.5% on average. When converting functions that directly manipulate global variables into special instruc-

tions, the description must be changed so that the pointer to the global variable can be passed by reference

to the function, which results in smaller reduction of code size. Since data handled only by functions that

is converted to special instructions is transferred to the simulator as well as functions, the reduction of code

size became larger. Finally, the impact on implementation by each selection criterion was evaluated. When

a function with a large processing time is converted into a special instruction, the average execution time is

reduced by 18.0% as compared with the case where a function with a large code size is converted to a special

instruction, while the code size is increased by 6.0% on average. When comparing the AT product as an

evaluation on the cost performance aspect, the average when converting a function with a large processing

time into a special instruction was 36.6% smaller on average.


