
24Redundancy in instruction sequences of computer programs
Graduate Adviser: Shuichi ICHIKAWA 013740: Kazuhiro HATTANDA

1 Background
There are many instruction sequences that correspond to a

program, any of which serves equally for users as long as they
are functionally equivalent. In other words, there is redundancy
in constructing instruction sequence of a program. Such redun-
dancy can be utilized for watermarking or information hiding [1].

The purpose of this study is to evaluate the redundancy in
instruction sequences, particularly in the order of variables and
instructions. However, it is very difficult to count all redun-
dancy, because there are many options. Thus, in this paper,
only four options are examined; (1) reordering global variables,
(2) reordering local variables, (3) reordering basic blocks, and
(4) reordering instructions in each basic block. The performance
and object size of benchmark programs are also examined be-
fore and after the reordering. All measurements were made with
ELF object files for Intel x86 architecture, which were generated
by GCC 2.95.3 and binutils 2.13.

2 Reordering of variables
Generally, users are unaware of the addresses of variables.

Therefore, we can construct functionally equivalent programs
by reordering variables on main memory. Since there are n!
options to arrange n elements, we can generate n! functionally
equivalent instruction sequences with n variables.

There are global and local variables in C language. Global
variables are categorized into three types; external variables,
static variables, and initialized variables. It is possible to re-
order external variables by adding a feature to a linkage loader
(ld), which arranges the addresses of external variables. Static
variables and initialized variables are registered in .bss and .data
sections, respectively, and thus can be reordered by changing the
order of definition in assembly files after compilation.

Local variables are allocated on stack or on registers. Local
variables on stack are accessed via EBP register with the offset
values that are assigned by compiler. Therefore, it is possible
to reorder local variables on stack by adding a feature to C
compiler. There is also certain redundancy in register allocation,
which could be also utilized by enhancing C compiler. However,
this redundancy is not examined in this work, leaving it for
future works.

3 Reordering of instructions
An instruction sequence is divided into basic blocks, each of

which is a sequence of instructions that is executed straight
from its beginning to its end. The addresses of basic blocks
can be arbitrarily reordered, if the order of execution is main-
tained by adding unconditional jump instructions (Fig. 1). This
redundancy is usable to embed a digital signature into a pro-
gram [2][3]. In this study, a program was developed to read an
assembly file, to divide it into basic blocks, and to reorder these
basic blocks.

It is also possible to reorder instructions in a basic block, if the
resulting instruction sequence is functionally equivalent to the
original one. For example, in Fig. 2, the instructions (1) and (2)
are exchangeable, because both sequences yield the same result.

Let Ref [x] and Sto[x] be the sets of read operands and
write operands of an instruction x, respectively. Instructions
x and y are independent, if the following condition holds:
(Ref [x] ∩ Sto[y]) ∪ (Sto[x] ∩ Ref [y]) ∪ (Sto[x] ∩ Sto[y]) = φ.
In this study, a program was developed to reorder instructions
in each basic block and to count possible combinations of func-
tionally equivalent instruction sequences in an assembly file.

Fig. 1: Reordering basic
blocks

(1)

(2)

(3)

ax := var1
dx := var2
ax := ax + dx

(1)

(2)

(3)

ax := var1
dx := var2

ax := ax + dx

Fig. 2: Reordering in-
structions

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000

In
fo

rm
at

io
n

si
ze

 [b
yt

e]

Object file size [byte]

ed/main.c (-O)
ed/regex.c (-O)

bzip2.c (-O2)
gzip.c (-O)
gcc.c (-O2)

ldmain.c (-O2)
ldlang.c (-O2)

dhry_1.c (-O2)
dhry_2.c (-O2)

linpackc.c (-O2)
whetstone.c (-O2)

0.003*x-2.87

Fig. 3: Information density
with basic block reordering

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000

In
fo

rm
at

io
n

si
ze

 [b
yt

e]

Object file size [byte]

ed/main.c (-O)
ed/regex.c (-O)

bzip2.c (-O2)
gzip.c (-O)
gcc.c (-O2)

ldmain.c (-O2)
ldlang.c (-O2)

dhry_1.c (-O2)
dhry_2.c (-O2)

linpackc.c (-O2)
whetstone.c (-O2)

0.003*x-8.47

Fig. 4: Information density
with instruction reordering

4 Experiments and results
The options to arrange n items are n! = O(nn), which is diffi-

cult to handle when n is large. Thus, PPS (Partial Permutation
Scheme) [4] was adopted in this study. Items are divided into
chunks, each of which includes 6 items and 6! = 720 options.
Odd items were excluded from measurements. Table 1 lists the
open source programs in C language, which were selected for
experiments in this study.

Detected redundancy is summarized in Table 1. The redun-
dancy in instructions is larger than that in variables, because
the number of instructions is usually larger than the number of
variables. In optimized object codes, local variables are allo-
cated to registers and practically no redundancy is derived from
them. It is thus necessary to examine the redundancy of register
allocation, but it is left for future studies.

Figures 3 and 4 display the relationships between object file
size and the information capacity in reordering basic blocks and
instructions in basic blocks, respectively. Information capac-
ity was converted from detected redundancy. Information den-
sity, which is defined by information capacity divided by ob-
ject file size, was estimated to be 0.3% for reordering of basic
blocks (Fig. 3), 0.3% for reordering of instructions in basic blocks
(Fig. 4), and 0.02% for reordering of global variables.

These techniques may have some negative impacts on the per-
formance and the size of instruction sequence. In reordering
basic blocks, maximally 6.1% performance degradation was ob-
served in three benchmark programs on a Xeon 2.8GHz system.
The performance degradation was less than 5.1% for other three
cases. Basic block reordering also incurs (maximally) 4.7% in-
crease in object file sizes of the programs shown in Tab. 1, while
no increase was observed for other three techniques.

References
[1] Collberg, C. S. and Thomborson, C.: Watermarking, Tamper-

Proofing, and Obfuscation - Tools for Software Protection, IEEE
Trans. Software Eng., Vol. 28, No. 8, pp. 735–746 (2002).

[2] Davidson, R. I. and Myhrvold, N.: Method and system for gener-
ating and auditing a signature for generating and auditing a sig-
nature for a computer program, USPatent , No. 5,559,884 (1996).

[3] Hattanda, K. and Ichikawa, S.: The Evaluation of Davidson’s
Digital Signature Scheme, IEICE Trans. Fundamentals, Vol. E87-
A, No. 1, pp. 224–225 (2004).

[4] Ichikawa, S., Chiyama, H. and Akabane, K.: Redundancy in 3D
Polygon Models and Its Application to Digital Signature, Journal
of WSCG, Vol. 10, No. 1, pp. 225–232 (2002).

Tab. 1: Options of sample programs for four reordering methods
Program Compile Option #Func. #Line Object file size Global Local Basic Block Inst.

[byte]
dhry 1.c -DHZ=100 -DTIME 6 385 7464 5.18e+05 7.20e+02 1.40e+57 1.47e+37
dhry 1.c -DHZ=100 -DTIME -O2 6 385 7064 5.18e+05 1.00e+00 3.76e+48 4.23e+32
dhry 2.c 6 192 1936 1.00e+00 1.00e+00 1.39e+17 2.15e+10
dhry 2.c -O2 6 192 1600 1.00e+00 1.00e+00 1.93e+14 8.06e+03
linpackc.c -DDP -DUNROLL 12 907 15856 5.18e+05 2.69e+11 1.42e+157 6.81e+164
linpackc.c -DDP -DUNROLL -O2 12 907 11848 5.18e+05 1.00e+00 2.74e+131 1.11e+128
whetstone.c 4 433 5984 7.20e+02 2.69e+11 5.22e+45 1.13e+43
whetstone.c -O2 4 433 4096 7.20e+02 1.00e+00 1.94e+34 7.56e+31
ed/main.c default option (-O) 26 1684 38704 7.22e+22 1.00e+00 2.81e+311 2.10e+77
ed/regex.c default option (-O) 26 5171 28428 1.00e+00 1.00e+00 1.46e+337 4.60e+286
bzip2.c default option (-O2) 43 2103 31936 3.73e+08 1.00e+00 1.98e+174 5.17e+122
gzip.c default option (-O) 23 1744 28132 7.22e+22 1.00e+00 1.97e+134 3.82e+114
gcc.c default option (-O2) 50 5840 77448 5.22e+45 1.00e+00 1.53e+617 7.18e+602
ldmain.c default option (-O2) 20 1376 20512 7.20e+02 1.00e+00 3.78e+88 1.61e+88
ldlang.c default option (-O2) 126 5525 48128 1.93e+14 1.00e+00 5.46e+345 2.39e+255

