
Static Load-Balancing for Distributed Processing of Numerical Simulations

Graduate Advisor: Shuichi Ichikawa 963734 Shinji Yamashita

Keywords: Static load-balancing, recursive bisection, combinatorial optimization, branch-and-bound

1 Introduction

In the previous paper[1], the static load-balancing of parallel
PDE (Partial Di�erential Equations) solver was modeled as an
optimization problem, and solved by branch-and-bound method
with o�-the-shelf computers. This method takes both computa-
tion time and communication time into consideration.

The target computer system was assumed to be a parallel
computer that consists of uniform processing elements in the
previous paper[1]. On the other hand, this study deals with gen-
eral parallel processing environment that consist of non-uniform
processing elements. This situation is very popular in distributed
processing environment.

2 Model

Let the number of blocks be m, and the number of processors be
n. The relationship m � n is assumed in this paper (as in the
previous study [1]). Under this assumption, we can formulate
the problem in two stages. First, we have to �nd the best alloca-
tion of n distinguishable processors to m distinguishable blocks
to minimize the execution time. To determine the best proces-
sor allocation, we have to know the best partitioning of a block
for a given set of processors. Here, we decided that each pro-
cessor should deal with a single subblock, which is a rectangular
fragment of block.

BiHi

Wi

Bs0

Bs1

Bs2

Bs3

Figure 1: Partitioning of a Block

3 Partitioning

Partitioning of a block is a kind of combinatorial optimization
with geometrical constraints. All heights and widths of subblocks
must be integers, and the original block must be reconstructed
from its rectangular subblocks like a jigsaw puzzle (Figure 1).
Under these constraints, we have to �nd the best partitioning to
minimize the execution time. This optimization problem is so
di�cult that �ve heuristic algorithms are presented and quan-
titively evaluated here against a theoretical lower bound. The
heuristic partitioning algorithms are based on recursive bisection.
See my master thesis for more details.

4 Processor Allocation

Next, we have to �nd the best allocation of n distinguishable
processors to m distinguishable blocks so as to minimize the ex-
ecution time. Basically, every combination of processors must be
examined to solve this kind of combinatorial optimization prob-
lem, but this is a di�cult computation problem. In this paper, a
branch-and-bound method is adopted. A good approximation al-
gorithm is also important for practical use of branch-and-bound
method. The previous papers[2][3] showed the quantitive eval-
uation of three approximation algorithms (Approx1, Approx2,
and Approx3) with local search (Local12). Though the error of

1.00

1.05

1.10

1.15

1.20

1.25

4 8 12 16 20 24 28 32

A
cc

ur
ac

y

The number of PEs : n

Approx1
Approx2
Approx3
Approx4

1.00

1.05

1.10

1.15

1.20

1.25

4 8 12 16 20 24 28 32

A
cc

ur
ac

y

The number of PEs : n

Approx1 + Local12
Approx2 + Local12
Approx3 + Local12
Approx4 + Local12

Figure 2: Accuracy of Processor Allocation Algorithms
(m = 4)

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

0 32 64 96 128 160 192 224 256

R
el

at
iv

e 
ac

cu
ra

cy

The number of PEs : n

Approx1
Approx2
Approx3
Approx4

1e-05
1e-04
1e-03
1e-02
1e-01
1e+00
1e+01
1e+02
1e+03
1e+04

0 32 64 96 128 160 192 224 256

T
im

e 
[s

]

The number of PEs : n

Approx1
Approx2
Approx3
Approx4

Figure 3: Comparisons of Processor Allocation Algo-
rithms (m = 4)

Approx3[2][3] is less than 5% for (m = 4; n = 32), Approx3 is
based on partial enumeration method and requires much time
when m � n. Therefore, in this paper, we propose Approx4,
which allocates processing elements with greedy method.

5 Results

The approximation algorithms are quantitively evaluated against
the optimal grouping derived by branch-and-bound method. The
results of numerical simulations are shown in Figure 2 and 3. In
Figure 2, approximated solutions are compared to the optimal
solutions. When n > 32, it is so hard to solve this combinatorial
problem that approximated solutions are compared to Approx3's
solutions (Figure 3).

Approx3 gives good approximation, but requires much time
for solution. Approx4 gives the solution in almost constant time
(about 10ms), and the accuracy is only 10% worse than Approx3.
Consequently, Approx4 is regarded as the best approximation
algorithm.

References

[1] Ichikawa, S., Kawai, T. and Shimada, T.: Static Load Bal-
ancing for Parallel Numerical Simulation by Combinato-
rial Optimization, Trans. Information Processing Society of

Japan, Vol. 39, No. 6, pp. 1746 { 1756 (1998).

[2] Ichikawa, S. and Yamashita, S.: Static Load Balancing of
Parallel PDE Solver for Distributed Computing Environ-
ment, Proc. ISCA 13th Int'l Conf. Parallel and Distributed
Computing Systems (PDCS-2000), pp. 399 { 405 (2000).

[3] Ichikawa, S. and Yamashita, S.: Static Load-Balancing for
Distributed Processing of Numerical Simulations, Trans. In-
formation Processing Society of Japan, (submitted).


